
Piwheels 0.17 Documentation
Release 0.17

Ben Nuttall

Aug 09, 2020

Contents

1 Overview 1

2 piw-master 3

3 piw-slave 7

4 piw-monitor 9

5 piw-sense 11

6 piw-initdb 13

7 piw-import 15

8 piw-rebuild 17

9 piw-remove 19

10 piw-logger 21

11 Development 23

12 Module Reference 37

13 License 61

Python Module Index 63

Index 65

i

ii

CHAPTER 1

Overview

The piwheels project is designed to automate building of wheels from packages on PyPI for a set of pre-configured
ABIs. As the name suggests, it was originally built for Raspberry Pis but there’s nothing particular in the codebase
that should limit it to that platform. The system relies on the following components:

Component Description
piw-master
(page 3)

Coordinates the various build slaves, using the database to store all relevant information, and
keeps the web site up to date.

piw-slave
(page 7)

Builds package on behalf of the piwheels master. Is intended to run on separate machines to
the master, partly for performance and partly for security.

piw-monitor
(page 9)

Provides a friendly curses-based UI for interacting with the piwheels master.

piw-sense
(page 11)

Provides a friendly Sense HAT-based UI for interacting with the piwheels master.

piw-initdb
(page 13)

A simple maintenance script for initializing or upgrading the database to the current version.

piw-import
(page 15)

A tool for importing wheels manually into the piwheels database and file-system.

piw-remove
(page 19)

A tool for manually removing builds from the database and file-system.

piw-rebuild
(page 17)

A tool for regenerating certain elements of the piwheels web-site.

piw-logger
(page 21)

A tool for transferring download statistics into the piwheels database.

database
server

Currently only PostgreSQL1 is supported (and frankly that’s all we’re ever likely to support).
This provides the master’s data store.

web server Anything that can serve from a static directory is fine here. We use Apache2 in production.

Note: At present the master is a monolithic application, but the internal architecture is such that it could, in
future, be split into three parts: one that deals exclusively with the database server, one that deals exclusively with
the file-system served by the web server, and one that talks to the piwheels slave and monitor processes.

1 https://postgresql.org/
2 https://httpd.apache.org/

1

https://postgresql.org/
https://httpd.apache.org/

Piwheels 0.17 Documentation, Release 0.17

2 Chapter 1. Overview

CHAPTER 2

piw-master

The piw-master script is intended to be run on the database and file-server machine. It is recommended you do
not run piw-slave on the same machine as the piw-master script. The database specified in the configuration must
exist and have been configured with the piw-initdb script. It is recommended you run piw-master as an ordinary
unprivileged user, although obviously it will need write access to the output directory.

2.1 Synopsis

piw-master [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-d DSN]
[-o PATH] [--dev-mode] [--pypi-xmlrpc URL]
[--pypi-simple URL] [--status-queue ADDR]
[--control-queue ADDR] [--import-queue ADDR]
[--log-queue ADDR] [--slave-queue ADDR] [--file-queue ADDR]
[--web-queue ADDR] [--builds-queue ADDR] [--db-queue ADDR]
[--fs-queue ADDR] [--stats-queue ADDR]

2.2 Description

-h, --help
Show this help message and exit

--version
Show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
Produce less console output

-v, --verbose
Produce more console output

-l FILE, --log-file FILE
Log messages to the specified file

3

Piwheels 0.17 Documentation, Release 0.17

-d DSN, --dsn DSN
The database to use; this database must be configured with piw-initdb and the user must not be a Post-
greSQL3 superuser (default: postgres:///piwheels)

-o PATH, --output-path PATH
The path under which the website should be written; must be writable by the current user

--dev-mode
Run the master in development mode, which reduces some timeouts and tweaks some defaults

--pypi-xmlrpc URL
The URL of the PyPI XML-RPC service (default: https://pypi.python.org/pypi)

--pypi-simple URL
The URL of the PyPI simple API (default: https://pypi.python.org/simple)

--status-queue ADDR
The address of the queue used to report status to monitors (default: ipc:///tmp/piw-status); this is usually an
ipc address

--control-queue ADDR
The address of the queue a monitor can use to control the master (default: ipc:///tmp/piw-control); this is
usually an ipc address

--import-queue ADDR
The address of the queue used by piw-import (page 15) (default: ipc:///tmp/piw-import); this should always
be an ipc address

--log-queue ADDR
The address of the queue used by piw-logger (page 21) (default: ipc:///tmp/piw-logger); this should always
be an ipc address

--slave-queue ADDR
The address of the queue used to talk to the build slaves (default: tcp://*:5555); this is usually a tcp address

--file-queue ADDR
The address of the queue used to transfer files from slaves (default: tcp://*:5556); this is usually a tcp
address

--builds-queue ADDR
The address of the queue used to store pending builds (default: inproc://builds)

--db-queue ADDR
The address of the queue used to talk to the database server (default: inproc://db)

--fs-queue ADDR
The address of the queue used to talk to the file- system server (default: inproc://fs)

--stats-queue ADDR
The address of the queue used to send statistics to the collator task (default: inproc://stats)

2.3 Deployment

A typical deployment of the master service on a Raspbian server goes something like this (each step assumes you
start as root):

1. Install the pre-requisite software:

apt install postgresql-9.6 apache2 python3-psycopg2 python3-geoip
apt install python3-sqlalchemy python3-urwid python3-zmq python3-voluptuous
→˓python3-chameleon
pip install piwheels[monitor,master,logger]

3 https://postgresql.org/

4 Chapter 2. piw-master

https://postgresql.org/
https://postgresql.org/
https://pypi.python.org/pypi
https://pypi.python.org/simple
tcp://*:5555
tcp://*:5556

Piwheels 0.17 Documentation, Release 0.17

2. Set up the (unprivileged) piwheels user and the output directory:

groupadd piwheels
useradd -g piwheels -m piwheels
mkdir /var/www/piwheels
chown piwheels:piwheels /var/www/piwheels

3. Set up the database:

su - postgres
$ createuser piwheels
$ createdb -O postgres piwheels
$ piw-initdb

4. Set up the web server:

• Point the document root to the output path (/var/www/piwheels above, but it can be anywhere
your piwheels user has write access to; naturally you want to make sure your web-server’s user only
has read access to the location).

• Set up SSL for the web server (e.g. with Let’s Encrypt4; the dehydrated5 utility is handy for getting
and maintaining the SSL certificates).

5. Start the master running (it’ll take quite a while to populate the list of packages and versions from PyPI on
the initial run so get this going before you start bringing up build slaves):

su - piwheels
$ piw-master -v

6. Deploy some build slaves; see piw-slave (page 7) for deployment instructions.

2.4 Automatic start

If you wish to ensure that the master starts on every boot-up, you may wish to define a systemd unit for it. Example
units can be also be found in the root of the piwheels repository:

wget https://raw.githubusercontent.com/piwheels/piwheels/master/piwheels-master.
→˓service
cp piwheels-master.service /etc/systemd/system/
systemctl daemon-reload
systemctl enable piwheels-master
systemctl start piwheels-master

2.5 Upgrades

The master will check that build slaves have the same version number and will reject them if they do not. Further-
more, it will check the version number in the database’s configuration table matches its own and fail if it does not.
Re-run the piw-initdb (page 13) script as the PostgreSQL super-user to upgrade the database between versions
(downgrades are not supported, so take a backup first!).

4 https://letsencrypt.org/
5 https://github.com/lukas2511/dehydrated

2.4. Automatic start 5

https://letsencrypt.org/
https://github.com/lukas2511/dehydrated

Piwheels 0.17 Documentation, Release 0.17

6 Chapter 2. piw-master

CHAPTER 3

piw-slave

The piw-slave script is intended to be run on a standalone machine to build packages on behalf of the piw-master
script. It is intended to be run as an unprivileged user with a clean home-directory. Any build dependencies
you wish to use must already be installed. The script will run until it is explicitly terminated, either by Ctrl+C,
SIGTERM, or by the remote piw-master script.

3.1 Synopsis

piw-slave [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-m HOST]
[-t DURATION]

3.2 Description

-h, --help
Show this help message and exit

--version
Show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
Produce less console output

-v, --verbose
Produce more console output

-l FILE, --log-file FILE
Log messages to the specified file

-m HOST, --master HOST
The IP address or hostname of the master server (default: localhost)

-t DURATION, --timeout DURATION
The time to wait before assuming a build has failed (default: 3h)

7

Piwheels 0.17 Documentation, Release 0.17

3.3 Deployment

Our typical method of deployment is to spin up a new Pi as a build slave (through Mythic Beasts’ control panel)
then execute a script to install the piwheels code, and all the build dependencies that we feel are reasonable
to support under various Raspbian versions. The deployment script can be found in the root of the piwheels
repository:

wget https://raw.githubusercontent.com/piwheels/piwheels/master/deploy_slave.sh
chmod +x deploy_slave.sh
./deploy_slave.sh

However, you will very likely wish to customize this script for your own purposes, e.g. to support a different set
of dependencies, or to customize the typical build environment.

Once the script is complete, simply switch to the unprivileged user used to run the build slave, and execute piw-
slave (page 7). For example, assuming the master’s IP address is 10.0.0.1:

su - piwheels
$ piw-slave -m 10.0.0.1

3.4 Automatic start

If you wish to ensure that the build slave starts on every boot-up, you may wish to define a systemd unit for it.
Example units can be also be found in the root of the piwheels repository:

wget https://raw.githubusercontent.com/piwheels/piwheels/master/piwheels-slave.
→˓service
cp piwheels-slave.service /etc/systemd/system/
systemctl daemon-reload
systemctl enable piwheels-slave
systemctl start piwheels-slave

Warning: Be aware that this example unit forces a reboot in the case that the build slave fails (as occasionally
happens with excessively complex packages).

Because of this you must ensure that the slave executes successfully prior to installing the unit, otherwise
you’re liable to leave your build slave in permanent reboot cycle. This isn’t a huge issue for a build slave that’s
physically in front of you (from which you can detach and tweak the storage), but it may be an issue if you’re
dealing with a cloud builder.

8 Chapter 3. piw-slave

CHAPTER 4

piw-monitor

The piw-monitor application is used to monitor (and optionally control) the piw-master script. Upon startup it will
request the status of all build slaves currently known to the master, and will then continually update its display as
the slaves progress through builds. The controls at the bottom of the display allow the administrator to pause or
resume the master script, kill build slaves that are having issues (e.g. excessive resource consumption from a huge
build) or terminate the master itself.

4.1 Synopsis

piw-monitor [-h] [--version] [-c FILE] [--status-queue ADDR]
[--control-queue ADDR]

4.2 Description

-h, --help
Show this help message and exit

--version
Show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

--status-queue ADDR
The address of the queue used to report status to monitors (default: ipc:///tmp/piw-status)

--control-queue ADDR
The address of the queue a monitor can use to control the master (default: ipc:///tmp/piw-control)

4.3 Usage

The monitor application should be started on the same machine as the master after the piw-master (page 3) script
has been started. After initialization it will request the current status of all build slaves from the master, displaying
this in a list in the middle of the screen.

9

Piwheels 0.17 Documentation, Release 0.17

The Tab key can be used to navigate between the list of build slaves and the controls at the bottom of the screen.
Mouse control is also supported, provided the terminal emulator supports it. Finally, hot-keys for all actions are
available. The actions are as follows:

4.3.1 Pause

Hotkey: p

Pauses operations on the master. This causes Cloud Gazer (page 24) to stop querying PyPI, Slave Driver (page 25)
to return “SLEEP” in response to any build slave requesting new packages, and so on. This is primarily a debug-
ging tool to permit the developer to peek at the system in a more or less frozen state before resuming things.

4.3.2 Resume

Hotkey: r

Resumes operations on the master when paused.

4.3.3 Kill Slave

Hotkey: k

The next time the selected build slave requests a new package (with “IDLE”) the master will return “BYE”
indicating the slave should terminate. Note that this cannot kill a slave in the middle of a build (that would require
a more complex asynchronous protocol in Slave Driver (page 25)), but is useful for shutting things down in an
orderly fashion.

4.3.4 Terminate Master

Hotkey: t

Tells the master to shut itself down. In a future version, the master should request all build slaves to terminate as
well, but currently this is unimplemented.

4.3.5 Quit

Hotkey: q

Terminate the monitor. Note that this won’t affect the master.

10 Chapter 4. piw-monitor

CHAPTER 5

piw-sense

The piw-sense application is an alternative monitor for the piw-master script that uses the Raspberry Pi Sense
HAT as its user interface. Upon startup it will request the status of all build slaves currently known to the master,
and will then continually update its display as the slaves progress through builds. The Sense HAT’s joystick can
be used to navigate information about current builds, and kill builds slaves that are having issues, or terminate the
master itself.

5.1 Synopsis

piw-sense [-h] [--version] [-c FILE] [--status-queue ADDR]
[--control-queue ADDR] [-r DEGREES]

5.2 Description

-h, --help
Show this help message and exit

--version
Show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

--status-queue ADDR
The address of the queue used to report status to monitors (default: ipc:///tmp/piw-status)

--control-queue ADDR
The address of the queue a monitor can use to control the master (default: ipc:///tmp/piw-control)

-r DEGREES, --rotate DEGREES
The rotation of the HAT in degrees; must be 0 (the default), 90, 180, or 270

11

Piwheels 0.17 Documentation, Release 0.17

5.3 Usage

The Sense monitor can be started on the same machine as the master after the piw-master (page 3) script has been
started. After initialization it will request the current status of all build slaves from the master.

5.3.1 Layout

The top three (normally blue) rows of the display are used for some important statistics:

• The top row represents the ping time from the master, or more specifically the time since the last message
was received. This will continually increase (changing white), and reset with each message received. If
30 seconds elapse without any messages being received, this row will pulse red until another message is
received, resetting the count.

• The second row represents available disk space for the output directory on the master. White pixels represent
remaining space, and the scale is simply percentage (all blue = 0%, all white = 100%).

• The third row represents the number of pending builds on the master. The scale is one white pixel = 8 builds
in the queue (with partial shades representing <8 builds).

The remaining rows represent all build slaves. Each pixel represents a single build slave, working vertically then
horizontally. Build slaves are sorted first by ABI, then by label (as in piw-monitor (page 9)).

• A gray pixel indicates an idle build slave.

• A green pixel indicates an active build.

• A blue pixel indicates an active file transfer after a successful build.

• A purple pixel indicates a build slave cleaning up after a build.

• A yellow pixel indicates an active build that’s been running for more than 15 minutes; not necessarily a
problem but longer than average.

• A red pixel indicates a build slave that’s either timed out or been terminated; it should disappear from the
display within a few seconds.

5.3.2 Navigation

The pixel that pulses white indicates your current position, which can be moved with the Sense HAT joystick.
Pressing the joystick in when a build-slave is selected (indicated by it pulsing white) will bring up detailed infor-
mation on that build slave.

Scroll left and right to navigate through the build-slave information (label, ABI, current task, and kill option).
Press the joystick in to return to the main display (optionally killing the build slave if the kill screen is selected).

Scroll the cursor off the top of the display to go to detailed statistics information. Scroll left and right to navigate
through the available statistics (ping time, disk free, queue size, build rate, total build time, and total build size).
Most statistics are displayed as scrolling text, and a background fill representing the information graphically.
Scroll down to return to the main screen.

Scroll the cursor off the bottom of the display to go to the quit and terminate options (scroll left and right to
navigate between them). Press the joystick in to activate either option, or scroll up to return to the main screen.

12 Chapter 5. piw-sense

CHAPTER 6

piw-initdb

The piw-initdb script is used to initialize or upgrade the piwheels master database. The target PostgreSQL6

database must already exist, and the DSN should connect as a cluster superuser (e.g. the postgres user), in contrast
to the piw-master script which should not use the cluster superuser. The script will prompt before making any
permanent alterations, and all actions will be executed within a single transaction so that in the event of failure
the database will be left unchanged. Nonetheless, it is strongly recommended you take a backup of your database
before using this script for upgrades.

6.1 Synopsis

piw-initdb [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-d DSN]
[-u NAME] [-y]

6.2 Description

-h, --help
show this help message and exit

--version
show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
produce less console output

-v, --verbose
produce more console output

-l FILE, --log-file FILE
log messages to the specified file

6 https://postgresql.org/

13

https://postgresql.org/

Piwheels 0.17 Documentation, Release 0.17

-d DSN, --dsn DSN
The database to create or upgrade; this DSN must connect as the cluster superuser (default: post-
gres:///piwheels)

-u NAME, --user NAME
The name of the ordinary piwheels database user (default: piwheels); this must not be a cluster superuser

-y, --yes
Proceed without prompting before init/upgrades

6.3 Usage

This script is intended to be used after installation to initialize the piwheels master database. Note that it does not
create the database or the users for the database. It merely creates the tables, views, and other structures within an
already existing database. See the Overview (page 1) chapter for typical usage.

The script can also be used to upgrade an existing piwheels database to the latest version. The update scripts used
attempt to preserve all data, and all upgrades are performed in a single transaction so that, theoretically, if anything
goes wrong the database should be rolled back to its original state. However, it is still strongly recommended that
you back up your master database before proceeding with any upgrade.

14 Chapter 6. piw-initdb

CHAPTER 7

piw-import

The piw-import script is used to inject the specified file(s) manually into the piwheels database and file-system.
This script must be run on the same node as the piw-master script. If multiple files are specified, they are registered
as produced by a single build.

7.1 Synopsis

piw-import [-h] [--version] [-c FILE] [-q] [-v] [-l FILE]
[--package PACKAGE] [--package-version VERSION] [--abi ABI]
[--duration DURATION] [--output FILE] [-y] [-d]
[--import-queue ADDR]
files [files ...]

7.2 Description

-h, --help
Show this help message and exit

--version
Show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
Produce less console output

-v, --verbose
Produce more console output

-l FILE, --log-file FILE
Log messages to the specified file

--package PACKAGE
The name of the package to import; if omitted this will be derived from the file(s) specified

15

Piwheels 0.17 Documentation, Release 0.17

--package-version VERSION
The version of the package to import; if omitted this will be derived from the file(s) specified

--abi ABI
The ABI of the package to import; if omitted this will be derived from the file(s) specified

--duration DURATION
The time taken to build the package (default: 0s)

--output FILE
The filename containing the build output to insert into the database; if this is omitted an appropriate message
will be inserted instead

-y, --yes
Run non-interactively; never prompt during operation

-d, --delete
Remove the specified file(s) after a successful import; if the import fails, no files will be removed

--import-queue ADDR
The address of the queue used by piw-import (default: (ipc:///tmp/piw-import); this should always be
an ipc address

7.3 Usage

This utility is used to import wheels manually into the system. This is useful with packages which have no source
available on PyPI, or binary-only packages from third parties. If invoked with multiple files, all files will be
associated with a single “build” and the build will be for the package and version of the first file specified. No
checks are made for equality of package name or version (as several packages on PyPI would violate such a rule!).

The utility can be run in a batch mode with --yes (page 16) but still requires invoking once per build required
(you cannot register multiple builds in a single invocation).

The return code will be 0 if the build was registered and all files were uploaded successfully. Additionally the
--delete (page 16) option can be specified to remove the source files once all uploads are completed success-
fully. If anything fails, the return code will be non-zero and no files will be deleted.

The utility should only ever be run directly on the master node (opening the import queue to other machines is a
potential security risk).

16 Chapter 7. piw-import

CHAPTER 8

piw-rebuild

The piw-rebuild script is used to inject rebuild requests for various web pages into the piwheels system. This
script must be run on the same node as the piw-master script.

8.1 Synopsis

piw-rebuild [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-y]
[--import-queue ADDR]
part [package]

8.2 Description

-h, --help
Show this help message and exit

--version
Show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
Produce less console output

-v, --verbose
Produce more console output

-l FILE, --log-file FILE
Log messages to the specified file

-y, --yes
Run non-interactively; never prompt during operation

--import-queue ADDR
The address of the queue used by piw-rebuild (default: (ipc:///tmp/piw-import); this should always be
an ipc address

17

Piwheels 0.17 Documentation, Release 0.17

8.3 Usage

This utility is used to request rebuilds of parts of the piwheels website. This is primarily useful after manual
fixes to the database, manipulation of the file-system, or after large-scale upgrades which require rebuilding many
pages.

The mandatory part parameter can be one of the following values, which specify which part of the website to
rebuild:

Part Description
home Rebuild the home-page (/index.html)
search Rebuild the JSON search-index (/packages.json)
project Rebuild the project-page for the specified package (/project/package/index.html)
in-
dex

Rebuild the simple-index and the project-page for the specified package (/simple/package/index.html
and /project/package/index.html)

If part is “project” or “index” you may optionally specify a package name for which to rebuild the specified part.
If the package name is omitted, the utility will request a rebuild of the specified part for all known packages in the
system.

Warning: In the case a rebuild of all packages is requested, you will be prompted to make sure you wish to
continue (this option can take hours to process on a system with many builds). The --yes (page 17) option
can be used to skip this prompt but should be used carefully!

Note that the utility only requests the rebuild of the specified part. This request will be queued, and acted upon
as soon as The Scribe (page 26) reaches it but there is no guarantee this has occurred by the time the utility exits.
The return code will be 0 if the rebuild request was queued successfully. If anything fails the return code will be
non-zero and the request may or may not have been queued.

The utility should only ever be run directly on the master node (opening the import queue to other machines is a
potential security risk).

18 Chapter 8. piw-rebuild

CHAPTER 9

piw-remove

The piw-remove script is used to manually remove a version of a package from the system. All builds for the
specified version will be forgotten, and all files generated by such builds will be deleted.

By default, the version removed will be deleted entirely (not marked to skip). Optionally, you can provide a skip
reason; in this case the version will not be deleted (though its builds and files will), but will be left marked to skip
to prevent future rebuilds.

9.1 Synopsis

piw-remove [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-y]
[-s REASON] [--import-queue ADDR]
package version

9.2 Description

package
The name of the package to remove

version
The version of the package to remove

-h, --help
Show this help message and exit

--version
Show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
Produce less console output

-v, --verbose
Produce more console output

19

Piwheels 0.17 Documentation, Release 0.17

-l FILE, --log-file FILE
Log messages to the specified file

-y, --yes
Run non-interactively; never prompt during operation

-s REASON, --skip REASON
Leave the version in place, but marked with a reason to prevent future build attempts

--import-queue ADDR
The address of the queue used by piw-remove (default: (ipc:///tmp/piw-import); this should always be an
ipc address

9.3 Usage

This utility is typically used in response to a request from a package maintainer to remove a specific build from
the system. Usually because the presence of a piwheels build is causing issues in and of itself.

Note: Older versions of piwheels didn’t heed PyPI deletion messages. This is no longer the case and this utility
is no longer required to manually remove deleted packages.

The utility can be run in a batch mode with --yes (page 20) but still requires invoking once per deletion required
(you cannot remove multiple versions in a single invocation).

The return code will be 0 if the version was successfully removed. If anything fails, the return code will be
non-zero and no files should be deleted (but this cannot be guaranteed in all circumstances).

The utility should only ever be run directly on the master node (opening the import queue to other machines is a
potential security risk).

20 Chapter 9. piw-remove

CHAPTER 10

piw-logger

The piw-logger script is intended for use as an Apache “piped log script” but can also be used to feed pre-existing
Apache logs to the master by feeding logs to the script’s stdin. This script must be run on the same node as the
piw-master (page 3) script.

10.1 Synopsis

piw-logger [-h] [--version] [-c FILE] [-q] [-v] [-l FILE]
[--format FORMAT] [--log-queue ADDR] [--drop]
[files [files ...]]

10.2 Description

files
The log file(s) to load into the master; if omitted or “-” then stdin will be read which is the default for piped
log usage

-h, --help
Show this help message and exit

--version
Show program’s version number and exit

-c FILE, --configuration FILE
Specify a configuration file to load

-q, --quiet
Produce less console output

-v, --verbose
Produce more console output

-l FILE, --log-file FILE
Log messages to the specified file

21

Piwheels 0.17 Documentation, Release 0.17

--format FORMAT
The Apache log format that log lines will be expected to be in (default: combined); the short-cuts common,
combined and common_vhost can be used in addition to Apache LogFormat strings

--log-queue ADDR
The address of the queue used by piw-logger (default: (ipc:///tmp/piw-logger); this should always be an ipc
address

--drop
Drop log records if unable to send them to the master after a short timeout; this should generally be specified
when piw-logger is used as a piped log7 script

10.3 Usage

This utility is typically used to pipe logs from a web-server, such as Apache8 into the piwheels database where
they can be used for analysis, and to keep the stats on the homepage up to date. Apache provides a capability to
pipe all logs to a given script which can be used directly with piw-logger.

A typical configuration under a Debian-like operating system might use the Apache CustomLog9 directive as
follows, within the Apache virtual host reponsible for serving files to pip clients:

ErrorLog ${APACHE_LOG_DIR}/ssl_error.log
CustomLog ${APACHE_LOG_DIR}/ssl_access.log combined
CustomLog "|/usr/local/bin/piw-logger --drop" combined

7 http://httpd.apache.org/docs/current/logs.html#piped
8 https://httpd.apache.org/
9 http://httpd.apache.org/docs/current/mod/mod_log_config.html#customlog

22 Chapter 10. piw-logger

http://httpd.apache.org/docs/current/logs.html#piped
https://httpd.apache.org/
http://httpd.apache.org/docs/current/mod/mod_log_config.html#customlog

CHAPTER 11

Development

The main GitHub repository for the project can be found at:

https://github.com/piwheels/piwheels

After cloning, we recommend you set up a virtualenv for development and then execute make develop within
that virtualenv. This should install all requirements for executing all tools, building the documentation and exe-
cuting the test suite.

11.1 Testing

Executing the test suite requires that you have a local PostgreSQL10 installation configured with an unprivileged
user, a privileged super user, and a test database.

The test suite uses environment variables to discover the name of the test database, and the aforementioned users.
See the top of tests/conftest.py for more details. A typical execution of the test suite might look as
follows:

$ export PIWHEELS_TESTDB=piwtest
$ export PIWHEELS_USER=piwheels
$ export PIWHEELS_PASS=piwheels
$ export PIWHEELS_SUPERUSER=piwsuper
$ export PIWHEELS_SUPERPASS=foobar
$ cd piwheels
$ make test

You may wish to construct a script for exporting the environment variables, or add these values to your ~/.
bashrc.

Note: If you are not using your local PostgreSQL installation for anything else you may wish to set fsync=off
and synchronous_commit=off in your local postgresql.conf to speed up execution of the test suite.
Do NOT do this on any production PostgreSQL server!

10 https://postgresql.org/

23

https://github.com/piwheels/piwheels
https://postgresql.org/

Piwheels 0.17 Documentation, Release 0.17

11.2 Design

Although the piwheels master appears to be a monolithic script, it’s actually composed of numerous (often ex-
tremely simple) tasks. Each task runs its own thread and all communication between tasks takes place over
ZeroMQ11 sockets. This is also how communication occurs between the master and the piw-slave (page 7), and
the piw-monitor (page 9).

The following diagram roughly illustrates all the tasks in the system (including those of the build slaves and the
monitor), along with details of the type of ZeroMQ socket used to communicate between them:

piw-master (db)

piw-master (fs)

piw-master (core)

piw-monitor

piw-slavepiw-slave piw-slavepiw-slavepiw-import piw-rebuild piw-remove

piw-logger

PyPI

CloudGazer

mainmain mainmain

Users

TheOracle

piwheels
database

TheOracleTheOracle TheArchitect

SlaveDriver

Seraph

TheSecretary

TheScribe

www
filesystem

FileJuggler

BigBrother

Lumberjack

httpd

main

main

MrChase

main main main

main

It may be confusing that the file server and database server appear to be separate to the master in the diagram. This
is deliberate as the system’s architecture is such that certain tasks can be easily broken off into entirely separate
processes (potentially on separate machines), if required in future (either for performance or security reasons).

11.3 Tasks

The following sections document the tasks shown above (listed from the “front” at PyPI to the “back” at Users):

11.3.1 Cloud Gazer

Implemented in: piwheels.master.cloud_gazer.CloudGazer.

This task is the “front” of the system. It follows PyPI’s event log for new package and version registrations, and
writes those entries to the database. It does this via The Oracle (page 25).

11 https://zeromq.org/

24 Chapter 11. Development

https://zeromq.org/

Piwheels 0.17 Documentation, Release 0.17

11.3.2 The Oracle

Implemented in: piwheels.master.the_oracle.TheOracle (page 40).

This task is the main interface to the database. It accepts requests from other tasks (“register this new package”,
“log this build”, “what files were built with this package”, etc.) and executes them against the database. Because
database requests are extremely variable in their execution time, there are actually several instances of the oracle
which sit behind Seraph (page 25).

11.3.3 Seraph

Implemented in: piwheels.master.seraph.Seraph (page 44).

Seraph is a simple load-balancer for the various instances of The Oracle (page 25). This is the task that actually
accepts database requests. It finds a free oracle and passes the request along, passing back the reply when it’s
finished.

11.3.4 The Architect

Implemented in: piwheels.master.the_architect.TheArchitect (page 44).

This task is the final database related task in the master script. Unlike The Oracle (page 25) it periodically queries
the database for the packages that need building and passes this information along to the Slave Driver (page 25).

11.3.5 Slave Driver

Implemented in: piwheels.master.slave_driver.SlaveDriver (page 44).

This task is the main coordinator of the build slaves’ activities. When a build slave first comes online it introduces
itself to this task (with information including the ABI it can build for), and asks for a package to build. If there is
a pending package matching the build slave’s ABI, it will be told to build that package.

Periodically, The Architect (page 25) refreshes this task’s list of packages that require building.

Eventually the build slave will communicate whether or not the build succeeded, along with information about the
build (log output, files generated, etc.). This task writes this information to the database via The Oracle (page 25).
If the build was successful, it informs the File Juggler (page 26) that it should expect a file transfer from the
relevant build slave.

Finally, when all files from the build have been transferred, the Slave Driver informs the The Scribe (page 26) that
the package’s index and project page will need (re)writing. It also periodically informs Big Brother (page 26) of
the size of the build queue.

11.3.6 Mr. Chase

Implemented in: piwheels.master.mr_chase.MrChase.

This task talks to piw-import and handles importing builds manually into the system. It is essentially a cut-
down version of the Slave Driver (page 25) with a correspondingly simpler protocol. It is also the end-point for
piw-rebuild and piw-remove.

This task writes information to the database via The Oracle (page 25). If the imported build was successful, it
informs the File Juggler (page 26) that it should expect a file transfer from the importer.

Finally, when all files from the build have been transferred, it informs the The Scribe (page 26) that the package’s
index and project pages will need (re)writing.

11.3. Tasks 25

Piwheels 0.17 Documentation, Release 0.17

11.3.7 File Juggler

Implemented in: piwheels.master.file_juggler.FileJuggler (page 47).

This task handles file transfers from the build slaves to the master. Files are transferred in multiple (relatively
small) chunks and are verified with the hash reported by the build slave (retrieved from the database via The
Oracle (page 25)).

11.3.8 Big Brother

Implemented in: piwheels.master.big_brother.BigBrother (page 48).

This task is a bit of a miscellaneous one. It sits around periodically generating statistics about the system as a
whole (number of files, number of packages, number of successful builds, number of builds in the last hour, free
disk space, etc.) and sends these off to the The Scribe (page 26).

11.3.9 The Scribe

Implemented in: piwheels.master.the_scribe.TheScribe.

This task generates the web output for piwheels. It generates the home-page with statistics from Big Brother
(page 26), the overall package index, individual package file lists, and project pages with messages from Slave
Driver (page 25).

11.3.10 The Secretary

Implemented in piwheels.master.the_secretary.TheSecretary (page 49).

This task sits in front of The Scribe (page 26) and attempts to mitigate many of the repeated requests that typically
get sent to it. For example, project pages (which are relatively expensive to generate, in database terms), may need
regenerating every time a file is registered against a package version.

This often happens in a burst when a new package version is released, resulting in several (redundant) requests to
re-write the same page with minimally changed information. The secretary buffers up such requests, eliminating
duplicates before finally passing them to The Scribe (page 26) for processing.

11.4 Queues

It should be noted that the diagram omits several queues for the sake of brevity. For instance, there is a simple
PUSH/PULL control queue between the master’s “main” task and each sub-task which is used to relay control
messages like PAUSE, RESUME, and QUIT.

Most of the protocols used by the queues are (currently) undocumented with the exception of those between the
build slaves and the Slave Driver (page 25) and File Juggler (page 26) tasks (documented in the piw-slave (page 7)
chapter).

However, all protocols share a common basis: messages are lists of Python objects. The first element is always
string containing the action. Further elements are parameters specific to the action. Messages are encoded with
CBOR12.

12 https://cbor.io/

26 Chapter 11. Development

https://cbor.io/

Piwheels 0.17 Documentation, Release 0.17

11.5 Protocols

The following sections document the protocols used between the build slaves and the three sub-tasks that they talk
to in the piw-master (page 3). Each protocol operates over a separate queue. All messages in the piwheels system
follow a similar structure of being a tuple containing:

• A short unicode string indicating what sort of message it is.

• Data. The structure of the data is linked to the type of the message, and validated on both transmission and
reception (see piwheels.protocols for more information).

For example the message telling a build slave what package and version to build looks like this in Python syntax:

['BUILD', 'numpy', '1.14.0']

If a message is not associated with any data whatsoever, it is transmitted as a simple unicode string (without the
list encapsulation). The serialization format for all messages in the system is currently CBOR13.

11.5.1 Slave Driver

The queue that talks to Slave Driver (page 25) is a ZeroMQ REQ socket, hence the protocol follows a strict
request-reply sequence which is illustrated below:

13 https://cbor.io/

11.5. Protocols 27

https://cbor.io/

Piwheels 0.17 Documentation, Release 0.17

HELLO

ACK

[timeout,
pyver,
abi,
...

IDLE

BUILD

[package,
version]

SLEEP DIE

BUILT

SEND

filename

DONE

SENT

filename

BUSY

CONT

BYE

[id,url]

[status,
duration,
output,

...

[status,
duration
output,

...

28 Chapter 11. Development

Piwheels 0.17 Documentation, Release 0.17

1. The new build slave sends “HELLO” with data [build_timeout, master_timeout,
py_version_tag, abi_tag, platform_tag, label, os_name, os_version,
board_revision, board_serial] where:

• build_timeout is the slave’s configured timeout (the length of time after which it will assume a build
has failed and attempt to terminate it) as a timedelta14.

• master_timeout is the maximum length of time the slave will wait for communication from the master.
After this timeout it will assume the connection has failed, terminate and clean-up any on-going build,
then attempt to restart the connection to the master.

• py_version_tag is the python version the slave will build for (e.g. “27”, “35”, etc.)

• abi_tag is the ABI the slave will build for (e.g. “cp35m”)

• platform_tag is the platform of the slave (e.g. “linux_armv7l”)

• label is an identifying label for the slave (e.g. “slave2”); note that this label doesn’t have to be any-
thing specific, it’s purely a convenience for administrators displayed in the monitor. In the current
implementation this is the unqualified hostname of the slave

• os_name is a string identifying the operating system, e.g. “Raspbian GNU/Linux”.

• os_version is a string identifying the release of the operating system, e.g. “10 (buster)”.

• board_revision is a code indicating the revision of the board that the slave is running upon, e.g.
“c03111” for a Raspberry Pi 4B.

• board_serial is the serial number of the board that the slave is running upon.

2. The master replies sends “ACK” with data [slave_id, pypi_url] where slave_id is an integer iden-
tifier for the slave. Strictly speaking, the build slave doesn’t need this identifier but it can be helpful for
admins or developers to see the same identifier in logs on the master and the slave which is the only reason
it is communicated.

The pypi_url is the URL the slave should use to fetch packages from PyPI.

3. The build slave sends “IDLE” to indicate that it is ready to accept a build job. The “IDLE” message
is accompanied with the data [now, disk_total, disk_free, mem_total, mem_free,
load_avg, cpu_temp] where:

• now is a datetime15 indicating the current time on the build slave.

• disk_total is the total size (in bytes) of the file-system used to build wheels.

• disk_free is the number of bytes free in the file-system used to build wheels.

• mem_total is the total size (in bytes) of the RAM on the build slave.

• mem_free is the number of bytes of RAM currently available (not necessarily unused, but potentially
useable by builds).

• load_avg is the one minute load average.

• cpu_temp is the temperature, in degrees celsius of the CPU.

4. The master can reply with “SLEEP” which indicates that no jobs are currently available for that slave (e.g.
the master is paused, or the build queue is empty, or there are no builds for the slave’s particular ABI at
this time). In this case the build slave should pause a while (the current implementation waits 10 seconds)
before retrying “IDLE”.

5. The master can also reply with “DIE” which indicates the build slave should shutdown. In this case, after
cleaning up any resources the build slave should send back “BYE” and terminate (generally speaking,
whenever the slave terminates it should send “BYE” no matter where in the protocol it occurs; the master
will take this as a sign of termination).

14 https://docs.python.org/3.5/library/datetime.html#datetime.timedelta
15 https://docs.python.org/3.5/library/datetime.html#datetime.datetime

11.5. Protocols 29

https://docs.python.org/3.5/library/datetime.html#datetime.timedelta
https://docs.python.org/3.5/library/datetime.html#datetime.datetime

Piwheels 0.17 Documentation, Release 0.17

6. The master can also reply “BUILD” with data [package, version] where package is the name of a
package to build and version is the version to build. At this point, the build slave should attempt to locate
the package on PyPI and build a wheel from it.

7. While the build is underway, the slave must periodically ping the master with the “BUSY” message, which
is accompanied by the exact same stats as in the “IDLE” message.

8. If the master wishes the build slave to continue with the build it will reply with “CONT”. If the master
wants to build slave to terminate the build early it will reply with “DONE” (goto step 13).

9. Assuming the master doesn’t request termination of the build, eventually it will finish. In response to
the next “CONT” message, the slave sends “BUILT” with data [status, duration, output,
files]:

• status is True if the build succeeded and False otherwise.

• duration is a timedelta16 value indicating the length of time it took to build in seconds.

• output is a string containing the complete build log.

• files is a list17 of file state tuples containing the following fields in the specified order:

– filename is the filename of the wheel.

– filesize is the size in bytes of the wheel.

– filehash is the SHA256 hash of the wheel contents.

– package_tag is the package tag extracted from the filename.

– package_version_tag is the version tag extracted from the filename.

– py_version_tag is the python version tag extracted from the filename.

– abi_tag is the ABI tag extracted from the filename (sanitized).

– platform_tag is the platform tag extracted from the filename.

– dependencies is a set18 of dependency tuples containing the following fields in the specified
order:

* tool is the name of the tool used to install the dependency

* package is the name of the package to install with the tool

10. If the build succeeded, the master will send “SEND” with data filename where filename is one of the
names transmitted in the prior “BUILT” message.

11. At this point the slave should use the File Juggler (page 34) protocol documented below to transmit the
contents of the specified file to the master. When the file transfer is complete, the build slave sends “SENT”
to the master.

12. If the file transfer fails to verify, or if there are more files to send the master will repeat the “SEND” message.
Otherwise, if all transfers have completed and have been verified, the master replies with “DONE”.

13. The build slave is now free to destroy all resources associated with the build, and returns to step 3 (“IDLE”).

If at any point, the master takes longer than master_timeout (default: 5 minutes) to respond to a slave’s request,
the slave will assume the master has disappeared. If a build is still active, it will be cleaned up and terminated, the
connection to the master will be closed, the slave’s ID will be reset and the slave must restart the protocol from
the top (“HELLO”).

This permits the master to be upgraded or replaced without having to shutdown and restart the slaves manually.
It is possible that the master is restarted too fast for the slave to notice. In this case the slave’s next message
will be mis-interpreted by the master as an invalid initial message, and it will be ignored. However, this is
acceptable behaviour as the re-connection protocol described above will then effectively restart the slave after the
master_timeout has elapsed.

16 https://docs.python.org/3.5/library/datetime.html#datetime.timedelta
17 https://docs.python.org/3.5/library/stdtypes.html#list
18 https://docs.python.org/3.5/library/stdtypes.html#set

30 Chapter 11. Development

https://docs.python.org/3.5/library/datetime.html#datetime.timedelta
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#set

Piwheels 0.17 Documentation, Release 0.17

11.5.2 Mr Chase (importing)

The queue that talks to Mr. Chase (page 25) is a ZeroMQ REQ socket, hence the protocol follows a strict request-
reply sequence which is illustrated below (see below for documentation of the “REMOVE” path):

IMPORT

ERROR

SEND

[package,
version,
status,

...

REMOVE

DONE

[package,
version,
skip]

REBUILD

[part,
package]

SENT

failure/more

success

1. The importer sends “IMPORT” with data [slave_id, package, version, abi_tag,
status, duration, output, files]:

• slave_id is the integer id of the build slave that created the wheel. This is usually 0 and is ignored by
the master anyway.

• package is the name of the package that the build is for.

• version is the version of the package that the build is for.

• abi_tag is either None, indicating that the master should use the “default” (minimum) build ABI
registered in the system, or is a string indicating the ABI that the build was attempted for.

• status is True if the build succeeded and False otherwise.

• duration is a float19 value indicating the length of time it took to build in seconds.

• output is a string containing the complete build log.

• files is a list of file state tuples containing the following fields in the specified order:

– filename is the filename of the wheel.

– filesize is the size in bytes of the wheel.

– filehash is the SHA256 hash of the wheel contents.

– package_tag is the package tag extracted from the filename.

19 https://docs.python.org/3.5/library/functions.html#float

11.5. Protocols 31

https://docs.python.org/3.5/library/functions.html#float

Piwheels 0.17 Documentation, Release 0.17

– package_version_tag is the version tag extracted from the filename.

– py_version_tag is the python version tag extracted from the filename.

– abi_tag is the ABI tag extracted from the filename (sanitized).

– platform_tag is the platform tag extracted from the filename.

– dependencies is a set20 of dependency tuples containing the following fields in the specified
order:

* tool is the name of the tool used to install the dependency

* package is the name of the package to install with the tool

2. If the import information is insufficient or incorrect, the master will send “ERROR” with data message
which is the description of the error that occurred.

3. If the import information is okay, the master will send “SEND” with data filename for each file men-
tioned in the build.

4. At this point the importer should use the File Juggler (page 34) protocol to transmit the contents of the
specified file to the master. When the file transfer is complete, the importer sends “SENT” to the master.

5. If the file transfer fails to verify, or if there are more files to send the master will repeat the “SEND” message.
Otherwise, if all transfers have completed and have been verified, the master replies with “DONE”.

6. The importer is now free to remove all files associated with the build, if requested to.

11.5.3 Mr Chase (removing)

The queue that talks to Mr. Chase (page 25) is a ZeroMQ REQ socket, hence the protocol follows a strict request-
reply sequence which is illustrated below (see above for documentation of the IMPORT path):

20 https://docs.python.org/3.5/library/stdtypes.html#set

32 Chapter 11. Development

https://docs.python.org/3.5/library/stdtypes.html#set

Piwheels 0.17 Documentation, Release 0.17

IMPORT

ERROR

SEND

[package,
version,
status,

...

REMOVE

DONE

[package,
version,
skip]

REBUILD

[part,
package]

SENT

failure/more

success

1. The utility sends “REMOVE” with data [package, version, skip]:

• package is the name of the package to remove.

• version is the version of the package to remove.

• skip is a string containing the reason the version should never be built again, or is a blank string
indicating the version should be rebuilt.

2. If the removal fails (e.g. if the package or version does not exist), the master will send “ERROR” with data
message (a string describing the error that occurred).

3. If the removal is successful, the master replies with “DONE”.

11.5.4 Mr Chase (rebuilding)

The queue that talks to Mr. Chase (page 25) is a ZeroMQ REQ socket, hence the protocol follows a strict request-
reply sequence which is illustrated below (see above for documentation of the IMPORT path):

11.5. Protocols 33

Piwheels 0.17 Documentation, Release 0.17

IMPORT

ERROR

SEND

[package,
version,
status,

...

REMOVE

DONE

[package,
version,
skip]

REBUILD

[part,
package]

SENT

failure/more

success

1. The utility sends “REBUILD” with data [part, package]:

• part is the part of the website to rebuild. It must be one of “HOME”, “SEARCH”, “PROJECT” or
“BOTH”.

• package is the name of the package to rebuild indexes and/or project pages for or None if pages for
all packages should be rebuilt. This parameter is omitted if part is “HOME” or “SEARCH”.

2. If the rebuild request fails (e.g. if the package does not exist), the master will send “ERROR” with data
message (a string describing the error that occurred).

3. If the rebuild request is successful, the master replies with “DONE”.

11.5.5 File Juggler

The queue that talks to File Juggler (page 26) is a ZeroMQ DEALER socket. This is because the protocol is
semi-asynchronous (for performance reasons). For the sake of illustration, a synchronous version of the protocol
is illustrated below:

34 Chapter 11. Development

Piwheels 0.17 Documentation, Release 0.17

HELLO

FETCH

[id]

CHUNK

[offset,data]

DONE

[offset,length]

1. The build slave initially sends “HELLO” with data slave_id where slave_id is the integer identifier of
the slave. The master knows what file it requested from this slave (with “SEND” to the Slave Driver), and
knows the file hash it is expecting from the “BUILT” message.

2. The master replies with “FETCH” with data [offset, length] where offset is a byte offset into the
file, and length is the number of bytes to send.

3. The build slave replies with “CHUNK” with data where data is a byte-string containing the requested
bytes from the file.

4. The master now either replies with another “FETCH” message or, when it has all chunks successfully
received, replies with “DONE” indicating the build slave can now close the file (though it can’t delete it yet;
see the “DONE” message on the Slave Driver side for that).

“FETCH” messages may be repeated if the master drops packets (due to an overloaded queue). Furthermore,
because the protocol is semi-asynchronous multiple “FETCH” messages will be sent before the master waits for
any returning “CHUNK” messages.

11.6 Security

Care must be taken when running the build slave. Building all packages in PyPI effectively invites the denizens of
the Internet to run arbitrary code on your machine. For this reason, the following steps are recommended:

1. Never run the build slave on the master; ensure they are entirely separate machines.

2. Run the build slave as an unprivileged user which has access to nothing it doesn’t absolutely require (it
shouldn’t have any access to the master’s file-system, the master’s database, etc.)

3. Install the build slave’s code in a location the build slave’s unprivileged user does not have write access (i.e.
not in a virtualenv under the user’s home dir).

4. Consider whether to make the unprivileged user’s home-directory read-only.

We have experimented with read-only home directories, but a significant portion of (usually scientifically oriented)
packages attempt to be “friendly” and either write data to the user’s home directory or modify the user’s profile
(~/.bashrc and so forth).

11.6. Security 35

Piwheels 0.17 Documentation, Release 0.17

The quandry is whether it is better to fail with such packages (a read-only home-directory will most likely crash
such setup scripts, failing the build), or partially support them (leaving the home-directory writeable even though
the modifications on the build-slave won’t be recorded in the resulting wheel and thus won’t be replicated on user’s
machines). There is probably no universally good answer.

Currently, while the build slave cleans up the temporary directory used by pip during wheel building, it doesn’t
attempt to clean its own home directory (which setup scripts are free to write to). This is something that ought to
be addressed in future as it’s a potentially exploitable hole.

36 Chapter 11. Development

CHAPTER 12

Module Reference

This chapter contains all the documentation auto-generated from the source code. It is probably not terribly useful
for reading through, but may be useful as a searchable reference.

• piwheels.master (page 38)

• piwheels.master.db (page 38)

• piwheels.master.cloud_gazer (page 40)

• piwheels.master.the_oracle (page 40)

• piwheels.master.seraph (page 44)

• piwheels.master.the_architect (page 44)

• piwheels.master.slave_driver (page 44)

• piwheels.master.mr_chase (page 47)

• piwheels.master.file_juggler (page 47)

• piwheels.master.big_brother (page 48)

• piwheels.master.the_secretary (page 49)

• piwheels.master.the_scribe (page 49)

• piwheels.slave (page 49)

• piwheels.slave.builder (page 49)

• piwheels.initdb (page 49)

• piwheels.importer (page 50)

• piwheels.remove (page 50)

• piwheels.transport (page 50)

• piwheels.tasks (page 52)

• piwheels.states (page 54)

• piwheels.ranges (page 59)

37

Piwheels 0.17 Documentation, Release 0.17

12.1 piwheels.master

12.2 piwheels.master.db

This module defines the low level database API, Database (page 38). This is a simple core SQLAlchemy affair
which runs trivial queries against the PostgreSQL database. All the serious logic is defined within views in the
database itself.

class piwheels.master.db.Database(dsn)
PiWheels database connection class

add_new_package(package, skip=”, description=”)
Insert a new package record into the database. Returns True if the row was inserted successfully, or
False if a key violation occurred.

add_new_package_version(package, version, released=None, skip=”)
Insert a new package version record into the database. Returns True if the row was inserted success-
fully, or False if a key violation occurred.

delete_build(package, version)
Remove all builds for the specified package and version, along with all files records.

delete_package(package)
Remove the specified package, along with all builds and files.

delete_version(package, version)
Remove the specified version of the specified package, along with all builds and files.

get_all_package_versions()
Returns the set of all known (package, version) tuples.

get_all_packages()
Returns the set of all known package names.

get_build_abis()
Return the set of ABIs that the master should attempt to build.

get_build_queue(limit=1000)
Returns a mapping of ABI tags to an ordered list of up to limit package version tuples which currently
need building for that ABI.

get_file_apt_dependencies(filename)
Returns a set of the apt dependencies for the specified filename.

get_package_description(package)
Retrieve the description for package in the packages table.

get_package_files(package)
Returns a mapping of filenames to file hashes; this is all the data required to build the simple index.html
for the specified package.

get_project_files(package)
Returns all details required to build the files table in the project page of the specified package.

get_project_versions(package)
Returns all details required to build the versions table in the project page of the specified package.

get_pypi_serial()
Return the serial number of the last PyPI event.

get_search_index()
Return a mapping of all packages to their download count for the last month. This is used to construct
the searchable package index.

get_statistics()
Return various build related statistics from the database.

38 Chapter 12. Module Reference

Piwheels 0.17 Documentation, Release 0.17

get_version_files(package, version)
Returns the names of all files for version of package.

get_version_skip(package, version)
Returns the reason for skipping version of package.

get_versions_deleted(package)
Return any versions of package which have been marked for deletion.

load_rewrites_pending()
Loads the rewrites-pending queue (the internal state of TheSecretary) from the database.

log_build(build)
Log a build attempt in the database, including build output and wheel info if successful.

log_download(download)
Log a download in the database, including data derived from JSON in pip’s user-agent.

log_json(json)
Log a project’s JSON page hit in the database.

log_page(page)
Log a web page hit in the database.

log_project(project)
Log a project page hit in the database.

log_search(search)
Log a search in the database, including data derived from JSON in pip’s user-agent.

package_marked_deleted(package)
Check whether package has been marked for deletion.

save_rewrites_pending(queue)
Save the rewrites-pending queue (the internal state of TheSecretary) in the database. The queue
parameter is expected to be a list of RewritePendingRow tuples.

set_package_description(package, description)
Update the description for package in the packages table.

set_pypi_serial(serial)
Update the serial number of the last PyPI event.

skip_package(package, reason)
Mark a package with a reason to prevent future builds of all versions (and all future versions).

skip_package_version(package, version, reason)
Mark a version of a package with a reason to prevent future build attempts.

test_package(package)
Check whether package already exists in the database. Returns a boolean.

test_package_version(package, version)
Check whether version of package already exists in the database. Returns a boolean.

unyank_version(package, version)
Mark the specified version of the specified package version as “unyanked”.

yank_version(package, version)
Mark the specified version of the specified package version as “yanked”.

12.2. piwheels.master.db 39

Piwheels 0.17 Documentation, Release 0.17

12.3 piwheels.master.cloud_gazer

12.4 piwheels.master.the_oracle

Defines TheOracle (page 40) task and the DbClient (page 42) RPC class for talking to it.

class piwheels.master.the_oracle.TheOracle(config)
This task provides an RPC-like interface to the database; it handles requests such as registering a new
package, version, or build, and answering queries about the hashes of files. The primary clients of this class
are SlaveDriver (page 44), TheScribe, and CloudGazer.

Note that because database requests are notoriously variable in length the client RPC class (DbClient
(page 42)) doesn’t directly talk to TheOracle (page 40). Rather, multiple instances of TheOracle
(page 40) are spawned and Seraph (page 44) sits in front of these acting as a simple load-sharing router
for the RPC clients.

close()
Close all registered queues. This should be overridden to close any additional queues the task holds
which aren’t registered.

do_allpkgs()
Handler for “ALLPKGS” message, sent by DbClient (page 42) to request the set of all packages
define known to the database.

do_allvers()
Handler for “ALLVERS” message, sent by DbClient (page 42) to request the set of all (package,
version) tuples known to the database.

do_delbuild(package, version)
Handler for “DELBUILD” message, sent by DbClient (page 42) to remove all builds (and files and
downloads by cascade) for version of package.

do_delpkg(package)
Handler for “DELPKG” message, sent by DbClient (page 42) to delete a package.

do_delver(package, version)
Handler for “DELVER” message, sent by DbClient (page 42) to delete a specific version of a
package.

do_filedeps(filename)
Handler for “FILEDEPS” message, sent by DbClient (page 42) to request apt dependencies for
filename, returned as a set of dependencies excluding those which are preinstalled in the distro version
with the corresponding ABI tag.

do_getabis()
Handler for “GETABIS” message, sent by DbClient (page 42) to request the list of all ABIs to build
for.

do_getdesc(package)
Handler for “GETDESC” message, sent by DbClient (page 42) to retrieve a package’s project de-
scription.

do_getpypi()
Handler for “GETPYPI” message, sent by DbClient (page 42) to request the record of the last serial
number from the PyPI changelog.

do_getsearch()
Handler for “GETSEARCH” message, sent by DbClient (page 42) to request the recent download
statistics, returned as a mapping of package to (downloads_recent, downloads_all) tuples.

do_getskip(package, version)
Handler for “GETSKIP” message, send by DbClient (page 42) to request the reason for skipping
builds of version of package.

40 Chapter 12. Module Reference

Piwheels 0.17 Documentation, Release 0.17

do_getstats()
Handler for “GETSTATS” message, sent by DbClient (page 42) to request the latest database statis-
tics, returned as a list of (field, value) tuples.

do_loadrwp()
Handler for “LOADRWP” message, sent by DbClient (page 42) to request the content of the
rewrites_pending table.

do_logbuild(build)
Handler for “LOGBUILD” message, sent by DbClient (page 42) to register a new build result.

do_logdownload(download)
Handler for “LOGDOWNLOAD” message, sent by DbClient (page 42) to register a new download.

do_logjson(json)
Handler for “LOGJSON” message, sent by DbClient (page 42) to register a new project JSON
download.

do_logpage(page)
Handler for “LOGPAGE” message, sent by DbClient (page 42) to register a new web page hit.

do_logproject(project)
Handler for “LOGPROJECT” message, sent by DbClient (page 42) to register a new project page
hit.

do_logsearch(search)
Handler for “LOGSEARCH” message, sent by DbClient (page 42) to register a new search.

do_newpkg(package, skip, description)
Handler for “NEWPKG” message, sent by DbClient (page 42) to register a new package.

do_newver(package, version, released, skip)
Handler for “NEWVER” message, sent by DbClient (page 42) to register a new (package, version)
tuple.

do_pkgdeleted(package)
Handler for “PKGDELETED” message, sent by DbClient (page 42) to request whether or not the
specified package has been marked for deletion.

do_pkgexists(package)
Handler for “PKGEXISTS” message, sent by DbClient (page 42) to request whether or not the
specified package exists.

do_pkgfiles(package)
Handler for “PKGFILES” message, sent by DbClient (page 42) to request details of all wheels
assocated with package.

do_projfiles(package)
Handler for “PROJFILES” message, sent by DbClient (page 42) to request file details of all versions
of package.

do_projvers(package)
Handler for “PROJVERS” message, sent by DbClient (page 42) to request build and skip details of
all versions of package.

do_saverwp(queue)
Handler for “SAVERWP” message, sent by DbClient (page 42) to request that queue is saved to the
rewrites_pending table.

do_setdesc(package, description)
Handler for “SETDESC” message, sent by DbClient (page 42) to update a package’s project de-
scription.

do_setpypi(serial)
Handler for “SETPYPI” message, sent by DbClient (page 42) to update the last seen serial number
from the PyPI changelog.

12.4. piwheels.master.the_oracle 41

Piwheels 0.17 Documentation, Release 0.17

do_skippkg(package, reason)
Handler for “SKIPPKG” message, sent by DbClient (page 42) to skip building all versions of a
package.

do_skipver(package, version, reason)
Handler for “SKIPVER” message, sent by DbClient (page 42) to skip building a specific version of
a package.

do_unyankver(package, version)
Handler for “UNYANKVER” message, sent by DbClient (page 42) to mark a specific version of a
package as not “yanked”.

do_verexists(package, version)
Handler for “VEREXISTS” message, sent by DbClient (page 42) to request whether or not the
specified version of package exists.

do_verfiles(package, version)
Handler for “VERFILES” message, sent by DbClient (page 42) to request the filenames of all
wheels associated with version of package.

do_versdeleted(package)
Handler for “VERSDELETED” message, sent by DbClient (page 42) to request any versions for
package which have been marked for deletion.

do_yankver(package, version)
Handler for “YANKVER” message, sent by DbClient (page 42) to mark a specific version of a
package as “yanked”.

handle_db_request(queue)
Handle incoming requests from DbClient (page 42) instances.

class piwheels.master.the_oracle.DbClient(config, logger=None)
RPC client class for talking to TheOracle (page 40).

add_new_package(package, skip=”, description=”)
See db.Database.add_new_package() (page 38).

add_new_package_version(package, version, released=None, skip=”)
See db.Database.add_new_package_version() (page 38).

delete_build(package, version)
See db.Database.delete_build() (page 38).

delete_package(package)
See db.Database.delete_package() (page 38).

delete_version(package, version)
See db.Database.delete_version() (page 38).

get_all_package_versions()
See db.Database.get_all_package_versions() (page 38).

get_all_packages()
See db.Database.get_all_packages() (page 38).

get_build_abis()
See db.Database.get_build_abis() (page 38).

get_file_apt_dependencies(filename)
See db.Database.get_file_apt_dependencies() (page 38).

get_package_description(package)
See db.Database.get_project_description().

get_package_files(package)
See db.Database.get_package_files() (page 38).

42 Chapter 12. Module Reference

Piwheels 0.17 Documentation, Release 0.17

get_project_files(package)
See db.Database.get_project_files() (page 38).

get_project_versions(package)
See db.Database.get_project_versions() (page 38).

get_pypi_serial()
See db.Database.get_pypi_serial() (page 38).

get_search_index()
See db.Database.get_search_index() (page 38).

get_statistics()
See db.Database.get_statistics() (page 38).

get_version_files(package, version)
See db.Database.get_version_files() (page 38).

get_version_skip(package, version)
See db.Database.get_version_skip() (page 39).

get_versions_deleted(package)
See db.Database.get_versions_deleted() (page 39).

load_rewrites_pending()
See db.Database.load_rewrites_pending() (page 39).

log_build(build)
See db.Database.log_build() (page 39).

log_download(download)
See db.Database.log_download() (page 39).

log_json(json)
See db.Database.log_json() (page 39).

log_page(page)
See db.Database.log_page() (page 39).

log_project(project)
See db.Database.log_project() (page 39).

log_search(search)
See db.Database.log_search() (page 39).

package_marked_deleted(package)
See db.Database.package_marked_deleted() (page 39).

save_rewrites_pending(queue)
See db.Database.save_rewrites_pending() (page 39).

set_package_description(package, description)
See db.Database.update_project_description().

set_pypi_serial(serial)
See db.Database.set_pypi_serial() (page 39).

skip_package(package, reason)
See db.Database.skip_package() (page 39).

skip_package_version(package, version, reason)
See db.Database.skip_package_version() (page 39).

test_package(package)
See db.Database.test_package() (page 39).

test_package_version(package, version)
See db.Database.test_package_version() (page 39).

12.4. piwheels.master.the_oracle 43

Piwheels 0.17 Documentation, Release 0.17

unyank_version(package, version)
See db.Database.unyank_version() (page 39).

yank_version(package, version)
See db.Database.yank_version() (page 39).

12.5 piwheels.master.seraph

Defines the Seraph (page 44) task; see class for more details.

class piwheels.master.seraph.Seraph(config)
This task is a simple load-sharing router for TheOracle (page 40) tasks.

handle_back(queue)
Receive a response from an instance of TheOracle (page 40) on the back queue. Strip off the
worker’s address frame and add it back to the available queue then send the response back to the client
that made the original request.

handle_front(queue)
If any workers are currently available, receive DbClient (page 42) requests from the front queue
and send it on to the worker including the client’s address frame.

12.6 piwheels.master.the_architect

Defines TheArchitect (page 44) task; see class for more details.

class piwheels.master.the_architect.TheArchitect(config)
This task queries the backend database to determine which versions of packages have yet to be built (and
aren’t marked to be skipped). It pushes the results to SlaveDriver (page 44) to sort out.

close()
Close all registered queues. This should be overridden to close any additional queues the task holds
which aren’t registered.

quit()
Overridden to cancel any existing long-running query.

update_build_queue()
The architect simply runs the build queue query repeatedly, with a break of a minute between each
execution.

All entries found within this limit are sorted into per-ABI queues and pushed to SlaveDriver
(page 44) which queues and dispatches jobs to build ABI-matched slaves as they become available.

12.7 piwheels.master.slave_driver

Defines the SlaveDriver (page 44) task; see class for more details.

class piwheels.master.slave_driver.SlaveDriver(config)
This task handles interaction with the build slaves using the slave protocol. Interaction is driven by the
slaves (i.e. the master doesn’t push jobs, rather the slaves request a job and the master replies with the next
(package, version) tuple from the internal “builds” queue).

The task also incidentally interacts with several other queues: the internal “status” queue is sent details of
every reply sent to a build slave (the main_loop() method passes this information on to any listening
monitors). Also, the internal “indexes” queue is informed of any packages that need web page indexes
re-building (as a result of a successful build).

44 Chapter 12. Module Reference

Piwheels 0.17 Documentation, Release 0.17

close()
Close all registered queues. This should be overridden to close any additional queues the task holds
which aren’t registered.

do_built(slave)
Handler for the build slave’s “BUILT” message, which is sent after an attempted package build suc-
ceeds or fails. The handler logs the result in the database and, if files have been generated by the build,
informs the FileJuggler (page 47) task to expect a file transfer before sending “SEND” back to
the build slave with the required filename.

If no files were generated (e.g. in the case of a failed build, or a degenerate success), “DONE” is
returned indicating that the build slave is free to discard all resources generated during the build and
return to its idle state.

do_busy(slave)
Handler for the build slave’s “BUSY” message, which is sent periodically during package builds. If the
slave fails to respond with a BUSY ping for a duration longer than SlaveState.busy_timeout
then the master will assume the slave has died and remove it from the internal state mapping (if the
slave happens to resurrect itself later the master will simply treat it as a new build slave).

In response to “BUSY” the master can respond “CONT” to indicate the build should continue process-
ing, or “DONE” to indicate that the build slave should immediately terminate and discard the build
and return to “IDLE” state.

do_bye(slave)
Handler for the build slave’s final “BYE” message upon shutdown. This removes the associated state
from the internal slaves dict.

Parameters slave (SlaveState (page 55)) – The object representing the current status
of the build slave.

do_hello(slave)
Handler for the build slave’s initial “HELLO” message. This associates the specified slave state with
the slave’s address and returns “HELLO” with the master’s id for the slave (the id communicated back
simply for consistency of logging; administrators can correlate master log messages with slave log
messages when both have the same id number; we can’t use IP address for this as multiple slaves can
run on one machine).

Parameters slave (SlaveState (page 55)) – The object representing the current status
of the build slave.

do_idle(slave)
Handler for the build slave’s “IDLE” message (which is effectively the slave requesting work). If the
master wants to terminate the slave, it sends back “BYE”. If the build queue (for the slave’s ABI) is
empty or the task is currently paused, “SLEEP” is returned indicating the slave should wait a while
and then try again.

If a job can be retrieved from the (ABI specific) build queue, then a “BUILD” message is sent back
with the required package and version.

Parameters slave (SlaveState (page 55)) – The object representing the current status
of the build slave.

do_sent(slave)
Handler for the build slave’s “SENT” message indicating that it’s finished sending the requested file to
FileJuggler. The FsClient RPC mechanism is used to ask FileJuggler to verify the trans-
fer against the stored hash and, if this is successful, a message is sent to TheScribe to regenerate
the package’s index.

If further files remain to be transferred, another “SEND” message is returned to the build slave. Oth-
erwise, “DONE” is sent to free all build resources.

If a transfer fails to verify, another “SEND” message with the same filename is returned to the build
slave.

12.7. piwheels.master.slave_driver 45

Piwheels 0.17 Documentation, Release 0.17

handle_build(queue)
Refresh the ABI-specific queues of package versions waiting to be built. The queues are limited to
1000 packages per ABI, and are kept as lists ordered by release date. When a message arrives from
TheArchitect it refreshes (replaces) all current queues. There is, however, still a duplication
possibility as TheArchitect doesn’t know what packages are actively being built; this method
handles filtering out such packages.

Even if the active builds fail (because build slaves crash, or the network dies) this doesn’t matter as
a future re-run of the build queue query will return these packages again, and if no build slaves are
actively working on them at that time they will then be retried.

handle_control(queue)
Handle incoming requests to the internal control queue.

This class understands a couple of extra control messages unique to it, specifically “KILL” to tell a
build slave to terminate, “SKIP” to tell a build slave to terminate its current build immmediately, and
“HELLO” to cause all “HELLO” messages from build slaves to be replayed (for the benefit of a newly
attached monitor process).

handle_delete(queue)
Handle package or version deletion requests.

When the PyPI upstream deletes a version or package, the CloudGazer task requests that other tasks
perform the deletion on its behalf. In the case of this task, this involves cancelling any pending builds
of that package (version), and ignoring any builds involving that package (version) in the next queue
update from TheArchitect.

handle_slave(queue)
Handle requests from build slaves.

See the piw-slave (page 7) chapter for an overview of the protocol for messages between build slaves
and SlaveDriver (page 44). This method retrieves the message from the build slave, finds the as-
sociated SlaveState (page 55) and updates it with the message, then calls the appropriate message
handler. The handler will be expected to return a reply (in the usual form of a list of strings) or None
if no reply should be sent (e.g. for a final “BYE” message).

kill_slave(slave_id)
Additional task control method to trigger a “KILL” message to the internal control queue. See
handle_control() (page 46) for more information.

list_slaves()
Additional task control method to trigger a “HELLO” message to the internal control queue. See
quit() (page 53) for more information.

remove_expired()
Remove slaves which have exceeded their timeout.

skip_slave(slave_id)
Additional task control method to trigger a “SKIP” message to the internal control queue. See
handle_control() (page 46) for more information.

sleep_slave(slave_id)
Additional task control method to trigger a “SLEEP” message to the internal control queue. See
handle_control() (page 46) for more information.

wake_slave(slave_id)
Additional task control method to trigger a “WAKE” message to the internal control queue. See
handle_control() (page 46) for more information.

46 Chapter 12. Module Reference

Piwheels 0.17 Documentation, Release 0.17

12.8 piwheels.master.mr_chase

12.9 piwheels.master.file_juggler

Defines the FileJuggler (page 47) task and the FsClient (page 48) RPC class for interacting with it.

exception piwheels.master.file_juggler.TransferError
Base class for errors raised during a file transfer.

exception piwheels.master.file_juggler.TransferIgnoreChunk
Exception raised when a build slave sends CHUNK instead of HELLO as the first message (see
FileJuggler.new_transfer() (page 48)).

exception piwheels.master.file_juggler.TransferDone
Exception raised when a transfer is complete. It may seem a little odd to use an exception for this, but it is
“exceptional” behaviour to terminate the file transfer.

class piwheels.master.file_juggler.FileJuggler(config)
This task handles file transfers from the build slaves. The specifics of the file transfer protocol are best
understood from the implementation of the FileState (page 54) class.

However, to detail how a file transfer begins: when a build slave has successfully completed a build it
informs the master via the SlaveDriver (page 44) task. That task replies with a “SEND” instruction to
the slave (including a filename). The slave then initiates the transfer with a “HELLO” message to this task.
Once transfers are complete the slave sends a “SENT” message to the SlaveDriver (page 44) task which
verifies the transfer and either retries it (when verification fails) or sends back “DONE” indicating the slave
can wipe the source file.

current_transfer(transfer, msg, *args)
Called for messages associated with an existing file transfer.

Usually this is “CHUNK” indicating another chunk of data. Rarely, it can be “HELLO” if the master
has fallen silent and dropped tons of packets.

Parameters

• transfer (TransferState (page 56)) – The object representing the state of the
transfer.

• msg (str21) – The message sent during the transfer.

• *args – All additional arguments; for “CHUNK” the first must be the file offset and
the second the data to write to that offset.

do_expect(slave_id, file_state)
Message sent by FsClient (page 48) to inform file juggler that a build slave is about to start a file
transfer. The message includes the full FileState (page 54). The state is stored in the pending
map.

Parameters

• slave_id (int22) – The identity of the build slave about to begin the transfer.

• file_state (list23) – The details of the file to be transferred including the ex-
pected hash.

do_verify(slave_id, package)
Message sent by FsClient (page 48) to request that juggler verify a file transfer against the expected
hash and, if it matches, rename the file into its final location.

Parameters
21 https://docs.python.org/3.5/library/stdtypes.html#str
22 https://docs.python.org/3.5/library/functions.html#int
23 https://docs.python.org/3.5/library/stdtypes.html#list

12.8. piwheels.master.mr_chase 47

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list

Piwheels 0.17 Documentation, Release 0.17

• slave_id (int24) – The identity of the build slave that sent the file.

• package (str25) – The name of the package that the file is to be committed to, if
valid.

handle_file(queue)
Handle incoming file-transfer messages from build slaves.

The file transfer protocol is in some ways very simple (see the chart in the piw-slave (page 7) chap-
ter for an overview of the message sequence) and in some ways rather complex (read the ZeroMQ
guide chapter on file transfers for more detail on why multiple messages must be allowed in flight
simultaneously).

The “normal” state for a file transfer is to be requesting and receiving chunks. Anything else, including
redundant re-sends, and transfer completion is handled as an exceptional case.

handle_fs_request(queue)
Handle incoming messages from FsClient (page 48) instances.

new_transfer(msg, *args)
Called for messages initiating a new file transfer.

The first message must be HELLO along with the id of the slave starting the transfer. The metadata for
the transfer will be looked up in the pending list (which is written to by do_expect() (page 47)).

Parameters

• msg (str26) – The message sent to start the transfer (must be “HELLO”)

• *args – All additional arguments (expected to be an integer slave id).

once()
This method is called once before the task loop starts. It the task needs to do some initialization or
setup within the task thread, this is the place to do it.

class piwheels.master.file_juggler.FsClient(config, logger=None)
RPC client class for talking to FileJuggler (page 47).

expect(slave_id, file_state)
See FileJuggler.do_expect() (page 47).

verify(slave_id, package)
See FileJuggler.do_verify() (page 47).

12.10 piwheels.master.big_brother

Defines the BigBrother (page 48) task; see class for more details.

class piwheels.master.big_brother.BigBrother(config)
This task periodically queries the database and output file-system for various statistics like the number of
packages known to the system, the number built, the number of packages built in the last hour, the remaining
file-system space, etc. These statistics are written to the internal “status” queue which main_loop() uses
to pass statistics to any listening monitors.

close()
Close all registered queues. This should be overridden to close any additional queues the task holds
which aren’t registered.

handle_control(queue)
Handle incoming requests to the internal control queue.

This just adds handling for the custom STATS verb to replay the master stats history.

24 https://docs.python.org/3.5/library/functions.html#int
25 https://docs.python.org/3.5/library/stdtypes.html#str
26 https://docs.python.org/3.5/library/stdtypes.html#str

48 Chapter 12. Module Reference

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str

Piwheels 0.17 Documentation, Release 0.17

12.11 piwheels.master.the_secretary

Defines the TheSecretary (page 49) task; see class for more details.

class piwheels.master.the_secretary.TheSecretary(config)
This task buffers requests for the scribe, for the purpose of consolidating multiple consecutive (duplicate)
requests.

Requests to write the project page for a package (which is a relatively expensive operation in terms of
database accesses) can come in thick and fast, particularly when a new version is being registered with lots
of files. There’s little point in writing the project page 5 times in as many seconds, or writing the project
page, then the index and project page immediately afterward. This class is used to buffer requests for up to
a minute, allowing us to eliminate many of the duplicate requests.

close()
Close all registered queues. This should be overridden to close any additional queues the task holds
which aren’t registered.

handle_input(queue)
Handle incoming write requests with buffering and de-dupe.

Some incoming requests (currently “HOME”, “SEARCH”, “DELPKG”, and “DELVER”) are passed
directly through to TheScribe as these are either sufficiently rare (“HOME”, “SEARCH”) that no
benefit is gained by buffering them or sufficiently urgent (“DELPKG”, “DELVER”) that they must be
acted on immediately.

For other requests (“PROJECT” and “BOTH”), requests can come thick and fast in the case of multiple
file registrations picked up by CloudGazer. In this case, requests are buffered for a minute and de-
duplicated; e.g. if several requests are made to re-write the project page for package “foo” within that
period, they will be combined into a single request. After the minute of buffering, the request is passed
down to TheScribe.

handle_output()
Passes buffered requests downstream.

This sub-task runs periodically to pluck things from the internal buffer that have reached the minute
delay, and passes them downstream to TheScribe. The process stops when we run out of things that
have expired.

once()
This method is called once before the task loop starts. It the task needs to do some initialization or
setup within the task thread, this is the place to do it.

12.12 piwheels.master.the_scribe

12.13 piwheels.slave

12.14 piwheels.slave.builder

12.15 piwheels.initdb

Contains the functions that make up the piw-initdb script.

piwheels.initdb.main(args=None)
This is the main function for the piw-initdb script. It creates the piwheels database required by the
master or, if it already exists, upgrades it to the current version of the application.

12.11. piwheels.master.the_secretary 49

Piwheels 0.17 Documentation, Release 0.17

piwheels.initdb.detect_users(conn, test_user)
Test that the user for conn is a cluster superuser (so we can drop and create anything we want in the
database), and that test_user (which will be granted limited rights to various objects for the purposes of
the piw-master script) exists and is not a cluster superuser.

piwheels.initdb.detect_version(conn)
Detect the version of the database. This is typically done by reading the contents of the configuration
table, but before that was added we can guess a couple of versions based on what tables exist (or don’t). Re-
turns None if the database appears uninitialized, and raises RuntimeError27 is the version is so ancient
we can’t do anything with it.

piwheels.initdb.get_connection(dsn)
Return an SQLAlchemy connection to the specified dsn or raise RuntimeError28 if the database doesn’t
exist (the administrator is expected to create the database before running this script).

piwheels.initdb.get_script(version=None)
Generate the script to get the database from version (the result of detect_version() (page 50))
to the current version of the software. If version is None, this is simply the contents of the sql/
create_piwheels.sql script. Otherwise, it is a concatenation of various update scripts.

piwheels.initdb.parse_statements(script)
This is an extremely crude statement splitter for PostgreSQL’s dialect of SQL. It understands
--comments, "quoted identifiers", 'string literals' and $delim$ extended
strings $delim$, but not E'\escaped strings' or /* C-style comments */. If you
start using such things in the update scripts, you’ll need to extend this function to accommodate them.

It returns a generator which yields individiual statements from script, delimited by semi-colon terminators.

12.16 piwheels.importer

12.17 piwheels.remove

Contains the functions that implement the piw-remove script.

piwheels.remove.main(args=None)
This is the main function for the piw-remove script. It uses MrChase to remove built packages from the
system.

piwheels.remove.do_remove(config)
Handles constructing and sending the “REMOVE” message to master.mr_chase.MrChase.

Parameters config – The configuration obtained from parsing the command line.

12.18 piwheels.transport

This module augments the classes provided by pyzmq (the 0MQ Python bindings) to use CBOR encoding, and
voluptuous for message validation. It also tweaks a few minor things like using seconds for timeouts.

class piwheels.transport.Context
Wrapper for 0MQ zmq.Context. This extends the socket() method to include parameters for the
socket’s protocol and logger.

class piwheels.transport.Socket(socket, protocol=None, logger=None)
Wrapper for zmq.Socket. This extends 0MQ’s sockets to include a protocol which will be used to
validate messages that are sent and received (via a voluptuous schema), and a logger which can be used to
debug socket behaviour.

27 https://docs.python.org/3.5/library/exceptions.html#RuntimeError
28 https://docs.python.org/3.5/library/exceptions.html#RuntimeError

50 Chapter 12. Module Reference

https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/exceptions.html#RuntimeError

Piwheels 0.17 Documentation, Release 0.17

bind(address)
Binds the socket to listen on the specified address.

close(linger=None)
Closes the socket. If linger is specified, it is the number of seconds to wait for pending messages to be
flushed.

connect(address)
Connects the socket to the listening socket at address.

drain()
Receives all pending messages in the queue and discards them. This is typically useful during shut-
down routines or for testing.

poll(timeout=None, flags=<MagicMock name=’mock.POLLIN’ id=’139706694284680’>)
Polls the socket for pending data (by default, when flags is POLLIN). If no data is available after
timeout seconds, returns False. Otherwise returns True.

If flags is POLLOUT instead, tests whether the socket has available slots for queueing new messages.

recv(flags=0)
Receives the next message as a bytes29 string.

recv_addr_msg(flags=0)
Receive a CBOR-encoded message (and associated data) along with the address it came from (repre-
sented as a bytes30 string).

recv_msg(flags=0)
Receive a CBOR-encoded message, returning a tuple of the unicode message string and its associated
data. This is the primary method used in piwheels for receving information into a task.

The message, and its associated data, will be validated agains the protocol associated with the
socket on construction.

recv_multipart(flags=0)
Receives a multi-part message, returning its content as a list of bytes31 strings.

send(buf, flags=0)
Send buf (a bytes32 string).

send_addr_msg(addr, msg, data=NoData, flags=0)
Send a CBOR-encoded message (and associated data) to addr, a bytes33 string.

send_msg(msg, data=NoData, flags=0)
Send the unicode string msg with its associated data as a CBOR-encoded message. This is the primary
method used in piwheels for sending information between tasks.

The message, and its associated data, must validate against the protocol associated with the socket
on construction.

send_multipart(msg_parts, flags=0)
Send msg_parts, a list of bytes34 strings as a multi-part message which can be received intact with
recv_multipart() (page 51).

subscribe(topic)
Subscribes SUB type sockets to the specified topic (a string prefix).

unsubscribe(topic)
Unsubscribes SUB type sockets from the specified topic (a string prefix).

29 https://docs.python.org/3.5/library/functions.html#bytes
30 https://docs.python.org/3.5/library/functions.html#bytes
31 https://docs.python.org/3.5/library/functions.html#bytes
32 https://docs.python.org/3.5/library/functions.html#bytes
33 https://docs.python.org/3.5/library/functions.html#bytes
34 https://docs.python.org/3.5/library/functions.html#bytes

12.18. piwheels.transport 51

https://docs.python.org/3.5/library/functions.html#bytes
https://docs.python.org/3.5/library/functions.html#bytes
https://docs.python.org/3.5/library/functions.html#bytes
https://docs.python.org/3.5/library/functions.html#bytes
https://docs.python.org/3.5/library/functions.html#bytes
https://docs.python.org/3.5/library/functions.html#bytes

Piwheels 0.17 Documentation, Release 0.17

hwm
The high-water mark of the socket, i.e. the number of messages that can be queued before the socket
blocks (or drops, depending on the socket type) messages.

class piwheels.transport.Poller
Wrapper for 0MQ zmq.Poller. This simply tweaks 0MQ’s poller to use seconds for timeouts, and to
return a dict35 by default from poll() (page 52).

poll(timeout=None)
Poll all registered sockets for the events they were registered with, for timeout seconds. Returns a
dictionary mapping sockets to events or an empty dictinoary if the timeout elapsed with no events
occurring.

register(sock, flags=<MagicMock name=’mock.POLLIN.__or__()’ id=’139706694292648’>)
Register sock with the poller, watching for events as specified by flags (which defaults to POLLIN and
POLLOUT events).

unregister(sock)
Unregister sock from the poller. After this, calls to poll() (page 52) will never return references to
sock.

12.19 piwheels.tasks

Implements the base classes (Task (page 52) and its derivative PauseableTask (page 53)) which form the
basis of all the tasks in the piwheels master.

exception piwheels.tasks.TaskQuit
Exception raised when the “QUIT” message is received by the internal control queue.

class piwheels.tasks.Task(config, control_protocol=Protocol(recv={’PAUSE’: NoData, ’RE-
SUME’: NoData, ’QUIT’: NoData}, send={}))

The Task (page 52) class is a Thread36 derivative which is the base for all tasks in the piwheels master.
The run() (page 53) method is overridden to perform a simple task loop which calls poll() (page 53)
once a cycle to react to any messages arriving into queues, and to dispatch any periodically executed meth-
ods.

Queues are associated with handlers via the register() (page 53) method. Periodic methods are asso-
ciated with an interval via the every() (page 52) method. These should be called during initialization
(don’t attempt to register handlers from within the thread itself).

Generally this shouldn’t be used as a base-class. Use one of the descendents that implements a pausing
mechanism, NonStopTask, PauseableTask (page 53), or PausingTask.

close()
Close all registered queues. This should be overridden to close any additional queues the task holds
which aren’t registered.

every(interval, handler)
Register handler to be called every interval periodically.

Parameters

• interval (timedelta) – The time interval between each run of handler.

• handler – The function or method to call periodically.

force(handler)
Force handler to run next time its interval is polled.

handle_control(queue)
Default handler for the internal control queue. In this base class it simply handles the “QUIT” message

35 https://docs.python.org/3.5/library/stdtypes.html#dict
36 https://docs.python.org/3.5/library/threading.html#threading.Thread

52 Chapter 12. Module Reference

https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/threading.html#threading.Thread

Piwheels 0.17 Documentation, Release 0.17

by raising TaskQuit (page 52) (which the run() (page 53) method will catch and use as a signal
to end).

Messages other than QUIT, PAUSE and RESUME raise TaskControl which can be caught in
descendents to implement custom control messages.

once()
This method is called once before the task loop starts. It the task needs to do some initialization or
setup within the task thread, this is the place to do it.

pause()
Requests that the task pause itself. This is an idempotent method; it’s always safe to call repeatedly
and even if the task isn’t pauseable it’ll simply be ignored.

poll(timeout=1)
This method is called once per loop of the task’s run() (page 53) method. It runs all periodic
handlers, then polls all registered queues and calls their associated handlers if the poll is successful.

quit()
Requests that the task terminate at its earliest convenience. To wait until the task has actually closed,
call join() afterwards.

register(queue, handler, flags=<MagicMock name=’mock.POLLIN’ id=’139706694284680’>)
Register queue to be polled on each cycle of the task. Any messages with the relevant flags (defaults to
POLLIN) will trigger the specified handler method which is expected to take a single argument which
will be queue.

Parameters

• queue (transport.Socket (page 50)) – The queue to poll.

• handler – The function or method to call when a message with matching flags
arrives in queue.

• flags (int37) – The flags to match in the queue poller (defaults to POLLIN).

resume()
Requests that the task resume itself. This is an idempotent method; it’s safe to call repeatedly and even
if the task isn’t pauseable it’ll simply be ignored.

run()
This method is the main task loop. Override this to perform one-off startup processing within the
task’s background thread, and to perform any finalization required.

socket(sock_type, protocol=None)
Construct a socket and link it to the logger for this task. This is primarily useful for debugging
purposes, but also ensures that the task will implicitly close and clean up the socket when it closes.

class piwheels.tasks.PauseableTask(config, control_protocol=Protocol(recv={’PAUSE’:
NoData, ’RESUME’: NoData, ’QUIT’: NoData},
send={}))

Derivative of Task (page 52) that implements a rudimentary pausing mechanism. When the “PAUSE”
message is received on the internal control queue, the task will enter a loop which simply polls the control
queue waiting for “RESUME” or “QUIT”. No other work will be done (Task.loop() and Task.
poll() (page 53) will not be called) until the task is resumed (or terminated).

If you need a more complex pausing implementation which can still do some work while paused (to drain
incoming queues for instance), use PausingTask instead.

handle_control(queue)
Default handler for the internal control queue. In this base class it simply handles the “QUIT” message
by raising TaskQuit (page 52) (which the run() method will catch and use as a signal to end).

Messages other than QUIT, PAUSE and RESUME raise TaskControl which can be caught in
descendents to implement custom control messages.

37 https://docs.python.org/3.5/library/functions.html#int

12.19. piwheels.tasks 53

https://docs.python.org/3.5/library/functions.html#int

Piwheels 0.17 Documentation, Release 0.17

12.20 piwheels.states

This module defines several classes which permit interested tasks to track the state of build slaves (SlaveState
(page 55)), file transfers (TransferState (page 56)), build attempts (BuildState (page 54)), build artifacts
(FileState (page 54)) and various loggers.

class piwheels.states.FileState(filename, filesize, filehash, package_tag, pack-
age_version_tag, py_version_tag, abi_tag, platform_tag,
dependencies, transferred=False)

Represents the state of an individual build artifact (a package file, or wheel) including its filename,
filesize, the SHA256 filehash, and various tags extracted from the build. Also tracks whether or
not the file has been transferred.

Parameters

• filename (str38) – The original filename of the build artifact.

• filesize (int39) – The size of the file in bytes.

• filehash (str40) – The SHA256 hash of the file contents.

• package_tag (str41) – The package tag extracted from the filename (first “-” sepa-
rated component).

• package_version_tag (str42) – The package version tag extracted from the file-
name (second “-” separated component).

• py_version_tag (str43) – The python version tag extracted from the filename
(third from last “-” separated component).

• abi_tag (str44) – The python ABI tag extracted from the filename (second from last
“-” separated component).

• platform_tag (str45) – The platform tag extracted from the filename (last “-” sep-
arated component).

• dependencies (set46) – The set of dependencies that are required to use this par-
ticular wheel.

• transferred (bool47) – True if the file has been transferred from the build slave
that generated it to the file server.

as_message()
Convert the FileState (page 54) object into a simpler list for serialization and transport.

classmethod from_message(value)
Convert the output from as_message() (page 54) back into a BuildState (page 54).

verified()
Called to set transferred to True after a file transfer has been successfully verified.

class piwheels.states.BuildState(slave_id, package, version, abi_tag, status, duration, out-
put, files, build_id=None)

Represents the state of a package build including the package, version, status, build duration,
and all the lines of output. The files (page 55) attribute is a mapping containing details of each
successfully built package file.

38 https://docs.python.org/3.5/library/stdtypes.html#str
39 https://docs.python.org/3.5/library/functions.html#int
40 https://docs.python.org/3.5/library/stdtypes.html#str
41 https://docs.python.org/3.5/library/stdtypes.html#str
42 https://docs.python.org/3.5/library/stdtypes.html#str
43 https://docs.python.org/3.5/library/stdtypes.html#str
44 https://docs.python.org/3.5/library/stdtypes.html#str
45 https://docs.python.org/3.5/library/stdtypes.html#str
46 https://docs.python.org/3.5/library/stdtypes.html#set
47 https://docs.python.org/3.5/library/functions.html#bool

54 Chapter 12. Module Reference

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#bool

Piwheels 0.17 Documentation, Release 0.17

Parameters

• slave_id (int48) – The master’s identifier for the build slave.

• package (str49) – The name of the package to build.

• version (str50) – The version number of the package to build.

• abi_tag (str51) – The ABI for which the build was attempted (must not be
'none').

• status (bool52) – True if the build succeeded, False if it failed.

• duration (timedelta) – The amount of time (in seconds) it took to complete the
build.

• output (str53) – The log output of the build.

• files (dict54) – A mapping of filenames to FileState (page 54) objects for each
artifact produced by the build.

• build_id (int55) – The integer identifier generated for the build by the database
(None until the build has been inserted into the database).

as_message()
Convert the BuildState (page 54), and its nested FileState (page 54) objects into simpler lists
for serialization and transport.

classmethod from_message(value)
Convert the output from as_message() (page 55) back into a BuildState (page 54).

logged(build_id)
Called to fill in the build’s ID in the backend database.

files
A mapping of filename to FileState (page 54) instances.

next_file
Returns the filename of the next file that needs transferring or None if all files have been transferred.

transfers_done
Returns True if all files have been transferred.

class piwheels.states.SlaveState(address, build_timeout, busy_timeout, native_py_version,
native_abi, native_platform, label, os_name, os_version,
board_revision, board_serial)

Tracks the state of a build slave. The master updates this state with each request and reply sent to and
received from the slave, and this class in turn manages the associated BuildState (page 54) (accessible
from build) and TransferState (page 56) (accessible from transfer). The class also tracks the
time a request was last seen from the build slave, and includes a kill() method.

Parameters

• address (bytes56) – The slave’s ephemeral 0MQ address.

Note: This is not the slave’s IP address; it’s a unique identifier generated on connection
to the master’s ROUTER socket. It will be different each time the slave re-connects (due
to timeout, reboot, etc).

48 https://docs.python.org/3.5/library/functions.html#int
49 https://docs.python.org/3.5/library/stdtypes.html#str
50 https://docs.python.org/3.5/library/stdtypes.html#str
51 https://docs.python.org/3.5/library/stdtypes.html#str
52 https://docs.python.org/3.5/library/functions.html#bool
53 https://docs.python.org/3.5/library/stdtypes.html#str
54 https://docs.python.org/3.5/library/stdtypes.html#dict
55 https://docs.python.org/3.5/library/functions.html#int
56 https://docs.python.org/3.5/library/functions.html#bytes

12.20. piwheels.states 55

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bytes

Piwheels 0.17 Documentation, Release 0.17

• timeout (int57) – The number of seconds after which any build will be considered
to have timed out (and the slave will be assumed crashed).

• native_py_version (str58) – The slave’s native Python version.

• native_abi (str59) – The slave’s native Python ABI.

• native_platform (str60) – The slave’s native platform.

• label (str61) – A label representing the slave.

class piwheels.states.TransferState(slave_id, file_state)
Tracks the state of a file transfer. All file transfers are held in temporary locations until verify() indicates
the transfer was successful, at which point they are atomically renamed into their final location.

The state is intimately tied to the file transfer protocol and includes methods to write a recevied chunk(),
and to determine the next chunk to fetch(), as well as a property to determine when the transfer is done.

Parameters

• slave_id (str62) – The ID number of the slave which built the file.

• file_state (FileState (page 54)) – The details of the file to be transferred (file-
name, size, hash, etc.)

class piwheels.states.DownloadState
Represents the state of the log entry for a download of a package wheel file, including its filename, the
user’s host IP, access timestamp and information about the operating system and installer.

Parameters

• filename (str63) – The filename of the downloaded wheel file.

• host – The hostname or IP address of the user.

• timestamp (datetime.datetime64) – The timestamp at which the file was
downloaded.

• or None arch (str65) – The architecture of the user’s computer system (usually
armv6 or armv7).

• distro_name (str66 or None67) – The user’s operating system distribution name
(e.g. Raspbian).

• distro_version (str68 or None69) – The version of the user’s operating sys-
tem distribution.

• os_name (str70 or None71) – The name of the user’s operating system (e.g.
Linux).

• os_version (str72 or None73) – The version of the user’s operating system (e.g.
Linux kernel version).

57 https://docs.python.org/3.5/library/functions.html#int
58 https://docs.python.org/3.5/library/stdtypes.html#str
59 https://docs.python.org/3.5/library/stdtypes.html#str
60 https://docs.python.org/3.5/library/stdtypes.html#str
61 https://docs.python.org/3.5/library/stdtypes.html#str
62 https://docs.python.org/3.5/library/stdtypes.html#str
63 https://docs.python.org/3.5/library/stdtypes.html#str
64 https://docs.python.org/3.5/library/datetime.html#datetime.datetime
65 https://docs.python.org/3.5/library/stdtypes.html#str
66 https://docs.python.org/3.5/library/stdtypes.html#str
67 https://docs.python.org/3.5/library/constants.html#None
68 https://docs.python.org/3.5/library/stdtypes.html#str
69 https://docs.python.org/3.5/library/constants.html#None
70 https://docs.python.org/3.5/library/stdtypes.html#str
71 https://docs.python.org/3.5/library/constants.html#None
72 https://docs.python.org/3.5/library/stdtypes.html#str
73 https://docs.python.org/3.5/library/constants.html#None

56 Chapter 12. Module Reference

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/datetime.html#datetime.datetime
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None

Piwheels 0.17 Documentation, Release 0.17

• py_name (str74 or None75) – The Python implementation used (e.g. CPython).

• py_version (str76 or None77) – The Python version used (e.g. 3.7.3).

• installer_name (str78 or None79) – The name of the tool used to install the
file (e.g. pip).

• installer_version (str80 or None81) – The version of the tool (e.g. pip)
used to install the file.

• setuptools_version (str82 or None83) – The version of setuptools used.

class piwheels.states.SearchState
Represents the state of the log entry for an instance of a package search, including the package name,
user’s host IP, access timestamp and information about the operating system and installer.

Parameters

• package (str84) – The name of the package searched for.

• host (str85) – The hostname or IP address of the user.

• timestamp (datetime.datetime86) – The timestamp at which the search oc-
curred.

• arch (str87 or None88) – The architecture of the user’s computer system (usually
armv6 or armv7).

• distro_name (str89 or None90) – The user’s operating system distribution name
(e.g. Raspbian).

• distro_version (str91 or None92) – The version of the user’s operating sys-
tem distribution.

• os_name (str93 or None94) – The name of the user’s operating system (e.g.
Linux).

• os_version (str95 or None96) – The version of the user’s operating system (e.g.
Linux kernel version).

• py_name (str97 or None98) – The Python implementation used (e.g. CPython).

• py_version (str99 or None100) – The Python version used (e.g. 3.7.3).

74 https://docs.python.org/3.5/library/stdtypes.html#str
75 https://docs.python.org/3.5/library/constants.html#None
76 https://docs.python.org/3.5/library/stdtypes.html#str
77 https://docs.python.org/3.5/library/constants.html#None
78 https://docs.python.org/3.5/library/stdtypes.html#str
79 https://docs.python.org/3.5/library/constants.html#None
80 https://docs.python.org/3.5/library/stdtypes.html#str
81 https://docs.python.org/3.5/library/constants.html#None
82 https://docs.python.org/3.5/library/stdtypes.html#str
83 https://docs.python.org/3.5/library/constants.html#None
84 https://docs.python.org/3.5/library/stdtypes.html#str
85 https://docs.python.org/3.5/library/stdtypes.html#str
86 https://docs.python.org/3.5/library/datetime.html#datetime.datetime
87 https://docs.python.org/3.5/library/stdtypes.html#str
88 https://docs.python.org/3.5/library/constants.html#None
89 https://docs.python.org/3.5/library/stdtypes.html#str
90 https://docs.python.org/3.5/library/constants.html#None
91 https://docs.python.org/3.5/library/stdtypes.html#str
92 https://docs.python.org/3.5/library/constants.html#None
93 https://docs.python.org/3.5/library/stdtypes.html#str
94 https://docs.python.org/3.5/library/constants.html#None
95 https://docs.python.org/3.5/library/stdtypes.html#str
96 https://docs.python.org/3.5/library/constants.html#None
97 https://docs.python.org/3.5/library/stdtypes.html#str
98 https://docs.python.org/3.5/library/constants.html#None
99 https://docs.python.org/3.5/library/stdtypes.html#str

100 https://docs.python.org/3.5/library/constants.html#None

12.20. piwheels.states 57

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/datetime.html#datetime.datetime
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None

Piwheels 0.17 Documentation, Release 0.17

• installer_name (str101 or None102) – The name of the tool used (e.g. pip).

• installer_version (str103 or None104) – The version of the tool (e.g. pip)
used.

• setuptools_version (str105 or None106) – The version of setuptools used.

class piwheels.states.ProjectState
Represents the state of the log entry for an instance of project page hit, including the page name, the user’s
host IP, access timestamp and the user’s user_agent.

Parameters

• package (str107) – The name of the package searched for.

• host (str108) – The hostname or IP address of the user.

• timestamp (datetime.datetime109) – The timestamp at which the page was
accessed.

• user_agent (str110) – The user agent of the page request.

class piwheels.states.JSONState
Represents the state of the log entry for an instance of project JSON download, including the page name,
the user’s host IP, access timestamp and the user’s user_agent.

Parameters

• package (str111) – The name of the package whose JSON file was accessed.

• host (str112) – The hostname or IP address of the user.

• timestamp (datetime.datetime113) – The timestamp at which the page was
accessed.

• user_agent (str114) – The user agent of the request.

class piwheels.states.PageState
Represents the state of the log entry for an instance of web page hit, including the page name, the user’s
host IP, access timestamp and the user’s user_agent.

Parameters

• page (str115) – The name of the page accessed.

• host (str116) – The IP address of the user.

• timestamp (datetime.datetime117) – The timestamp at which the page was
accessed.

• user_agent (str118) – The user agent of the page request.

class piwheels.states.SlaveStats

101 https://docs.python.org/3.5/library/stdtypes.html#str
102 https://docs.python.org/3.5/library/constants.html#None
103 https://docs.python.org/3.5/library/stdtypes.html#str
104 https://docs.python.org/3.5/library/constants.html#None
105 https://docs.python.org/3.5/library/stdtypes.html#str
106 https://docs.python.org/3.5/library/constants.html#None
107 https://docs.python.org/3.5/library/stdtypes.html#str
108 https://docs.python.org/3.5/library/stdtypes.html#str
109 https://docs.python.org/3.5/library/datetime.html#datetime.datetime
110 https://docs.python.org/3.5/library/stdtypes.html#str
111 https://docs.python.org/3.5/library/stdtypes.html#str
112 https://docs.python.org/3.5/library/stdtypes.html#str
113 https://docs.python.org/3.5/library/datetime.html#datetime.datetime
114 https://docs.python.org/3.5/library/stdtypes.html#str
115 https://docs.python.org/3.5/library/stdtypes.html#str
116 https://docs.python.org/3.5/library/stdtypes.html#str
117 https://docs.python.org/3.5/library/datetime.html#datetime.datetime
118 https://docs.python.org/3.5/library/stdtypes.html#str

58 Chapter 12. Module Reference

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/datetime.html#datetime.datetime
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/datetime.html#datetime.datetime
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/datetime.html#datetime.datetime
https://docs.python.org/3.5/library/stdtypes.html#str

Piwheels 0.17 Documentation, Release 0.17

class piwheels.states.MasterStats

piwheels.states.mkdir_override_symlink(pkg_dir)
Make pkg_dir, replacing any existing symlink in its place. See the notes in TheScribe.
write_package_index() for more information.

12.21 piwheels.ranges

A set of utility routines for efficiently tracking byte ranges within a stream. These are used to track which chunks
of a file have been received during file transfers from build slaves.

See FileJuggler (page 47) for the usage of these functions.

piwheels.ranges.consolidate(ranges)
Given a list of ranges in ascending order, this generator function returns the list with any overlapping ranges
consolidated into individual ranges. For example:

>>> list(consolidate([range(0, 5), range(4, 10)]))
[range(0, 10)]
>>> list(consolidate([range(0, 5), range(5, 10)]))
[range(0, 10)]
>>> list(consolidate([range(0, 5), range(6, 10)]))
[range(0, 5), range(6, 10)]

piwheels.ranges.exclude(ranges, ex)
Given a list of non-overlapping ranges in ascending order, and a range ex to exclude, this generator function
returns ranges with all values covered by ex removed from any contained ranges. For example:

>>> list(exclude([range(10)], range(2)))
[range(2, 10)]
>>> list(exclude([range(10)], range(2, 4)))
[range(0, 2), range(4, 10)]

piwheels.ranges.intersect(range1, range2)
Given two ranges range1 and range2 (which must both have a step of 1), returns the range formed by the
intersection of the two ranges, or None if the ranges do not overlap. For example:

>>> intersect(range(10), range(5))
range(0, 5)
>>> intersect(range(10), range(10, 2))
>>> intersect(range(10), range(2, 5))
range(2, 5)

piwheels.ranges.split(ranges, i)
Given a list of non-overlapping ranges in ascending order, this generator function returns the list with the
range containing i split into two ranges, one ending at i and the other starting at i. If i is not contained in
any of the ranges, then ranges is returned unchanged. For example:

>>> list(split([range(10)], 5))
[range(0, 5), range(5, 10)]
>>> list(split([range(10)], 0))
[range(0, 10)]
>>> list(split([range(10)], 20))
[range(0, 10)]

12.21. piwheels.ranges 59

Piwheels 0.17 Documentation, Release 0.17

60 Chapter 12. Module Reference

CHAPTER 13

License

Copyright © 2017 Ben Nuttall119 and Dave Jones120.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

The following copyright and license applies to the included cbor2 module only (all files under piwheels/cbor2):

Copyright © Alex Grönholm

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

119 https://github.com/bennuttall
120 dave@waveform.org.uk

61

https://github.com/bennuttall
mailto:dave@waveform.org.uk

Piwheels 0.17 Documentation, Release 0.17

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

62 Chapter 13. License

Python Module Index

p
piwheels.initdb, 49
piwheels.master.big_brother, 48
piwheels.master.db, 38
piwheels.master.file_juggler, 47
piwheels.master.seraph, 44
piwheels.master.slave_driver, 44
piwheels.master.the_architect, 44
piwheels.master.the_oracle, 40
piwheels.master.the_secretary, 49
piwheels.ranges, 59
piwheels.remove, 50
piwheels.states, 54
piwheels.tasks, 52
piwheels.transport, 50

63

Piwheels 0.17 Documentation, Release 0.17

64 Python Module Index

Index

Symbols
-abi ABI

piw-import command line option, 16
-builds-queue ADDR

piw-master command line option, 4
-control-queue ADDR

piw-master command line option, 4
piw-monitor command line option, 9
piw-sense command line option, 11

-db-queue ADDR
piw-master command line option, 4

-dev-mode
piw-master command line option, 4

-drop
piw-logger command line option, 22

-duration DURATION
piw-import command line option, 16

-file-queue ADDR
piw-master command line option, 4

-format FORMAT
piw-logger command line option, 21

-fs-queue ADDR
piw-master command line option, 4

-import-queue ADDR
piw-import command line option, 16
piw-master command line option, 4
piw-rebuild command line option, 17
piw-remove command line option, 20

-log-queue ADDR
piw-logger command line option, 22
piw-master command line option, 4

-output FILE
piw-import command line option, 16

-package PACKAGE
piw-import command line option, 15

-package-version VERSION
piw-import command line option, 15

-pypi-simple URL
piw-master command line option, 4

-pypi-xmlrpc URL
piw-master command line option, 4

-slave-queue ADDR
piw-master command line option, 4

-stats-queue ADDR
piw-master command line option, 4

-status-queue ADDR
piw-master command line option, 4
piw-monitor command line option, 9
piw-sense command line option, 11

-version
piw-import command line option, 15
piw-initdb command line option, 13
piw-logger command line option, 21
piw-master command line option, 3
piw-monitor command line option, 9
piw-rebuild command line option, 17
piw-remove command line option, 19
piw-sense command line option, 11
piw-slave command line option, 7

-c FILE, -configuration FILE
piw-import command line option, 15
piw-initdb command line option, 13
piw-logger command line option, 21
piw-master command line option, 3
piw-monitor command line option, 9
piw-rebuild command line option, 17
piw-remove command line option, 19
piw-sense command line option, 11
piw-slave command line option, 7

-d DSN, -dsn DSN
piw-initdb command line option, 13
piw-master command line option, 3

-d, -delete
piw-import command line option, 16

-h, -help
piw-import command line option, 15
piw-initdb command line option, 13
piw-logger command line option, 21
piw-master command line option, 3
piw-monitor command line option, 9
piw-rebuild command line option, 17
piw-remove command line option, 19
piw-sense command line option, 11
piw-slave command line option, 7

-l FILE, -log-file FILE
piw-import command line option, 15
piw-initdb command line option, 13

65

Piwheels 0.17 Documentation, Release 0.17

piw-logger command line option, 21
piw-master command line option, 3
piw-rebuild command line option, 17
piw-remove command line option, 19
piw-slave command line option, 7

-m HOST, -master HOST
piw-slave command line option, 7

-o PATH, -output-path PATH
piw-master command line option, 4

-q, -quiet
piw-import command line option, 15
piw-initdb command line option, 13
piw-logger command line option, 21
piw-master command line option, 3
piw-rebuild command line option, 17
piw-remove command line option, 19
piw-slave command line option, 7

-r DEGREES, -rotate DEGREES
piw-sense command line option, 11

-s REASON, -skip REASON
piw-remove command line option, 20

-t DURATION, -timeout DURATION
piw-slave command line option, 7

-u NAME, -user NAME
piw-initdb command line option, 14

-v, -verbose
piw-import command line option, 15
piw-initdb command line option, 13
piw-logger command line option, 21
piw-master command line option, 3
piw-rebuild command line option, 17
piw-remove command line option, 19
piw-slave command line option, 7

-y, -yes
piw-import command line option, 16
piw-initdb command line option, 14
piw-rebuild command line option, 17
piw-remove command line option, 20

A
add_new_package() (pi-

wheels.master.db.Database method), 38
add_new_package() (pi-

wheels.master.the_oracle.DbClient method),
42

add_new_package_version() (pi-
wheels.master.db.Database method), 38

add_new_package_version() (pi-
wheels.master.the_oracle.DbClient method),
42

as_message() (piwheels.states.BuildState method),
55

as_message() (piwheels.states.FileState method),
54

B
BigBrother (class in piwheels.master.big_brother),

48

bind() (piwheels.transport.Socket method), 50
BuildState (class in piwheels.states), 54

C
close() (piwheels.master.big_brother.BigBrother

method), 48
close() (piwheels.master.slave_driver.SlaveDriver

method), 44
close() (piwheels.master.the_architect.TheArchitect

method), 44
close() (piwheels.master.the_oracle.TheOracle

method), 40
close() (piwheels.master.the_secretary.TheSecretary

method), 49
close() (piwheels.tasks.Task method), 52
close() (piwheels.transport.Socket method), 51
connect() (piwheels.transport.Socket method), 51
consolidate() (in module piwheels.ranges), 59
Context (class in piwheels.transport), 50
current_transfer() (pi-

wheels.master.file_juggler.FileJuggler
method), 47

D
Database (class in piwheels.master.db), 38
DbClient (class in piwheels.master.the_oracle), 42
delete_build() (piwheels.master.db.Database

method), 38
delete_build() (pi-

wheels.master.the_oracle.DbClient method),
42

delete_package() (piwheels.master.db.Database
method), 38

delete_package() (pi-
wheels.master.the_oracle.DbClient method),
42

delete_version() (piwheels.master.db.Database
method), 38

delete_version() (pi-
wheels.master.the_oracle.DbClient method),
42

detect_users() (in module piwheels.initdb), 49
detect_version() (in module piwheels.initdb), 50
do_allpkgs() (pi-

wheels.master.the_oracle.TheOracle
method), 40

do_allvers() (pi-
wheels.master.the_oracle.TheOracle
method), 40

do_built() (piwheels.master.slave_driver.SlaveDriver
method), 45

do_busy() (piwheels.master.slave_driver.SlaveDriver
method), 45

do_bye() (piwheels.master.slave_driver.SlaveDriver
method), 45

do_delbuild() (pi-
wheels.master.the_oracle.TheOracle
method), 40

66 Index

Piwheels 0.17 Documentation, Release 0.17

do_delpkg() (piwheels.master.the_oracle.TheOracle
method), 40

do_delver() (piwheels.master.the_oracle.TheOracle
method), 40

do_expect() (piwheels.master.file_juggler.FileJuggler
method), 47

do_filedeps() (pi-
wheels.master.the_oracle.TheOracle
method), 40

do_getabis() (pi-
wheels.master.the_oracle.TheOracle
method), 40

do_getdesc() (pi-
wheels.master.the_oracle.TheOracle
method), 40

do_getpypi() (pi-
wheels.master.the_oracle.TheOracle
method), 40

do_getsearch() (pi-
wheels.master.the_oracle.TheOracle
method), 40

do_getskip() (pi-
wheels.master.the_oracle.TheOracle
method), 40

do_getstats() (pi-
wheels.master.the_oracle.TheOracle
method), 40

do_hello() (piwheels.master.slave_driver.SlaveDriver
method), 45

do_idle() (piwheels.master.slave_driver.SlaveDriver
method), 45

do_loadrwp() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_logbuild() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_logdownload() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_logjson() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_logpage() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_logproject() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_logsearch() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_newpkg() (piwheels.master.the_oracle.TheOracle
method), 41

do_newver() (piwheels.master.the_oracle.TheOracle
method), 41

do_pkgdeleted() (pi-
wheels.master.the_oracle.TheOracle

method), 41
do_pkgexists() (pi-

wheels.master.the_oracle.TheOracle
method), 41

do_pkgfiles() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_projfiles() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_projvers() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_remove() (in module piwheels.remove), 50
do_saverwp() (pi-

wheels.master.the_oracle.TheOracle
method), 41

do_sent() (piwheels.master.slave_driver.SlaveDriver
method), 45

do_setdesc() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_setpypi() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_skippkg() (pi-
wheels.master.the_oracle.TheOracle
method), 41

do_skipver() (pi-
wheels.master.the_oracle.TheOracle
method), 42

do_unyankver() (pi-
wheels.master.the_oracle.TheOracle
method), 42

do_verexists() (pi-
wheels.master.the_oracle.TheOracle
method), 42

do_verfiles() (pi-
wheels.master.the_oracle.TheOracle
method), 42

do_verify() (piwheels.master.file_juggler.FileJuggler
method), 47

do_versdeleted() (pi-
wheels.master.the_oracle.TheOracle
method), 42

do_yankver() (pi-
wheels.master.the_oracle.TheOracle
method), 42

DownloadState (class in piwheels.states), 56
drain() (piwheels.transport.Socket method), 51

E
every() (piwheels.tasks.Task method), 52
exclude() (in module piwheels.ranges), 59
expect() (piwheels.master.file_juggler.FsClient

method), 48

Index 67

Piwheels 0.17 Documentation, Release 0.17

F
FileJuggler (class in piwheels.master.file_juggler),

47
files

piw-logger command line option, 21
files (piwheels.states.BuildState attribute), 55
FileState (class in piwheels.states), 54
force() (piwheels.tasks.Task method), 52
from_message() (piwheels.states.BuildState class

method), 55
from_message() (piwheels.states.FileState class

method), 54
FsClient (class in piwheels.master.file_juggler), 48

G
get_all_package_versions() (pi-

wheels.master.db.Database method), 38
get_all_package_versions() (pi-

wheels.master.the_oracle.DbClient method),
42

get_all_packages() (pi-
wheels.master.db.Database method), 38

get_all_packages() (pi-
wheels.master.the_oracle.DbClient method),
42

get_build_abis() (piwheels.master.db.Database
method), 38

get_build_abis() (pi-
wheels.master.the_oracle.DbClient method),
42

get_build_queue() (pi-
wheels.master.db.Database method), 38

get_connection() (in module piwheels.initdb), 50
get_file_apt_dependencies() (pi-

wheels.master.db.Database method), 38
get_file_apt_dependencies() (pi-

wheels.master.the_oracle.DbClient method),
42

get_package_description() (pi-
wheels.master.db.Database method), 38

get_package_description() (pi-
wheels.master.the_oracle.DbClient method),
42

get_package_files() (pi-
wheels.master.db.Database method), 38

get_package_files() (pi-
wheels.master.the_oracle.DbClient method),
42

get_project_files() (pi-
wheels.master.db.Database method), 38

get_project_files() (pi-
wheels.master.the_oracle.DbClient method),
42

get_project_versions() (pi-
wheels.master.db.Database method), 38

get_project_versions() (pi-
wheels.master.the_oracle.DbClient method),
43

get_pypi_serial() (pi-
wheels.master.db.Database method), 38

get_pypi_serial() (pi-
wheels.master.the_oracle.DbClient method),
43

get_script() (in module piwheels.initdb), 50
get_search_index() (pi-

wheels.master.db.Database method), 38
get_search_index() (pi-

wheels.master.the_oracle.DbClient method),
43

get_statistics() (piwheels.master.db.Database
method), 38

get_statistics() (pi-
wheels.master.the_oracle.DbClient method),
43

get_version_files() (pi-
wheels.master.db.Database method), 38

get_version_files() (pi-
wheels.master.the_oracle.DbClient method),
43

get_version_skip() (pi-
wheels.master.db.Database method), 39

get_version_skip() (pi-
wheels.master.the_oracle.DbClient method),
43

get_versions_deleted() (pi-
wheels.master.db.Database method), 39

get_versions_deleted() (pi-
wheels.master.the_oracle.DbClient method),
43

H
handle_back() (piwheels.master.seraph.Seraph

method), 44
handle_build() (pi-

wheels.master.slave_driver.SlaveDriver
method), 45

handle_control() (pi-
wheels.master.big_brother.BigBrother
method), 48

handle_control() (pi-
wheels.master.slave_driver.SlaveDriver
method), 46

handle_control() (piwheels.tasks.PauseableTask
method), 53

handle_control() (piwheels.tasks.Task method),
52

handle_db_request() (pi-
wheels.master.the_oracle.TheOracle
method), 42

handle_delete() (pi-
wheels.master.slave_driver.SlaveDriver
method), 46

handle_file() (pi-
wheels.master.file_juggler.FileJuggler
method), 48

handle_front() (piwheels.master.seraph.Seraph

68 Index

Piwheels 0.17 Documentation, Release 0.17

method), 44
handle_fs_request() (pi-

wheels.master.file_juggler.FileJuggler
method), 48

handle_input() (pi-
wheels.master.the_secretary.TheSecretary
method), 49

handle_output() (pi-
wheels.master.the_secretary.TheSecretary
method), 49

handle_slave() (pi-
wheels.master.slave_driver.SlaveDriver
method), 46

hwm (piwheels.transport.Socket attribute), 51

I
intersect() (in module piwheels.ranges), 59

J
JSONState (class in piwheels.states), 58

K
kill_slave() (pi-

wheels.master.slave_driver.SlaveDriver
method), 46

L
list_slaves() (pi-

wheels.master.slave_driver.SlaveDriver
method), 46

load_rewrites_pending() (pi-
wheels.master.db.Database method), 39

load_rewrites_pending() (pi-
wheels.master.the_oracle.DbClient method),
43

log_build() (piwheels.master.db.Database
method), 39

log_build() (piwheels.master.the_oracle.DbClient
method), 43

log_download() (piwheels.master.db.Database
method), 39

log_download() (pi-
wheels.master.the_oracle.DbClient method),
43

log_json() (piwheels.master.db.Database method),
39

log_json() (piwheels.master.the_oracle.DbClient
method), 43

log_page() (piwheels.master.db.Database method),
39

log_page() (piwheels.master.the_oracle.DbClient
method), 43

log_project() (piwheels.master.db.Database
method), 39

log_project() (pi-
wheels.master.the_oracle.DbClient method),
43

log_search() (piwheels.master.db.Database
method), 39

log_search() (pi-
wheels.master.the_oracle.DbClient method),
43

logged() (piwheels.states.BuildState method), 55

M
main() (in module piwheels.initdb), 49
main() (in module piwheels.remove), 50
MasterStats (class in piwheels.states), 58
mkdir_override_symlink() (in module pi-

wheels.states), 59

N
new_transfer() (pi-

wheels.master.file_juggler.FileJuggler
method), 48

next_file (piwheels.states.BuildState attribute), 55

O
once() (piwheels.master.file_juggler.FileJuggler

method), 48
once() (piwheels.master.the_secretary.TheSecretary

method), 49
once() (piwheels.tasks.Task method), 53

P
package

piw-remove command line option, 19
package_marked_deleted() (pi-

wheels.master.db.Database method), 39
package_marked_deleted() (pi-

wheels.master.the_oracle.DbClient method),
43

PageState (class in piwheels.states), 58
parse_statements() (in module piwheels.initdb),

50
pause() (piwheels.tasks.Task method), 53
PauseableTask (class in piwheels.tasks), 53
piw-import command line option

-abi ABI, 16
-duration DURATION, 16
-import-queue ADDR, 16
-output FILE, 16
-package PACKAGE, 15
-package-version VERSION, 15
-version, 15
-c FILE, -configuration FILE, 15
-d, -delete, 16
-h, -help, 15
-l FILE, -log-file FILE, 15
-q, -quiet, 15
-v, -verbose, 15
-y, -yes, 16

piw-initdb command line option
-version, 13
-c FILE, -configuration FILE, 13

Index 69

Piwheels 0.17 Documentation, Release 0.17

-d DSN, -dsn DSN, 13
-h, -help, 13
-l FILE, -log-file FILE, 13
-q, -quiet, 13
-u NAME, -user NAME, 14
-v, -verbose, 13
-y, -yes, 14

piw-logger command line option
-drop, 22
-format FORMAT, 21
-log-queue ADDR, 22
-version, 21
-c FILE, -configuration FILE, 21
-h, -help, 21
-l FILE, -log-file FILE, 21
-q, -quiet, 21
-v, -verbose, 21
files, 21

piw-master command line option
-builds-queue ADDR, 4
-control-queue ADDR, 4
-db-queue ADDR, 4
-dev-mode, 4
-file-queue ADDR, 4
-fs-queue ADDR, 4
-import-queue ADDR, 4
-log-queue ADDR, 4
-pypi-simple URL, 4
-pypi-xmlrpc URL, 4
-slave-queue ADDR, 4
-stats-queue ADDR, 4
-status-queue ADDR, 4
-version, 3
-c FILE, -configuration FILE, 3
-d DSN, -dsn DSN, 3
-h, -help, 3
-l FILE, -log-file FILE, 3
-o PATH, -output-path PATH, 4
-q, -quiet, 3
-v, -verbose, 3

piw-monitor command line option
-control-queue ADDR, 9
-status-queue ADDR, 9
-version, 9
-c FILE, -configuration FILE, 9
-h, -help, 9

piw-rebuild command line option
-import-queue ADDR, 17
-version, 17
-c FILE, -configuration FILE, 17
-h, -help, 17
-l FILE, -log-file FILE, 17
-q, -quiet, 17
-v, -verbose, 17
-y, -yes, 17

piw-remove command line option
-import-queue ADDR, 20
-version, 19

-c FILE, -configuration FILE, 19
-h, -help, 19
-l FILE, -log-file FILE, 19
-q, -quiet, 19
-s REASON, -skip REASON, 20
-v, -verbose, 19
-y, -yes, 20
package, 19
version, 19

piw-sense command line option
-control-queue ADDR, 11
-status-queue ADDR, 11
-version, 11
-c FILE, -configuration FILE, 11
-h, -help, 11
-r DEGREES, -rotate DEGREES, 11

piw-slave command line option
-version, 7
-c FILE, -configuration FILE, 7
-h, -help, 7
-l FILE, -log-file FILE, 7
-m HOST, -master HOST, 7
-q, -quiet, 7
-t DURATION, -timeout DURATION, 7
-v, -verbose, 7

piwheels.initdb (module), 49
piwheels.master.big_brother (module), 48
piwheels.master.db (module), 38
piwheels.master.file_juggler (module), 47
piwheels.master.seraph (module), 44
piwheels.master.slave_driver (module), 44
piwheels.master.the_architect (module),

44
piwheels.master.the_oracle (module), 40
piwheels.master.the_secretary (module),

49
piwheels.ranges (module), 59
piwheels.remove (module), 50
piwheels.states (module), 54
piwheels.tasks (module), 52
piwheels.transport (module), 50
poll() (piwheels.tasks.Task method), 53
poll() (piwheels.transport.Poller method), 52
poll() (piwheels.transport.Socket method), 51
Poller (class in piwheels.transport), 52
ProjectState (class in piwheels.states), 58

Q
quit() (piwheels.master.the_architect.TheArchitect

method), 44
quit() (piwheels.tasks.Task method), 53

R
recv() (piwheels.transport.Socket method), 51
recv_addr_msg() (piwheels.transport.Socket

method), 51
recv_msg() (piwheels.transport.Socket method), 51

70 Index

Piwheels 0.17 Documentation, Release 0.17

recv_multipart() (piwheels.transport.Socket
method), 51

register() (piwheels.tasks.Task method), 53
register() (piwheels.transport.Poller method), 52
remove_expired() (pi-

wheels.master.slave_driver.SlaveDriver
method), 46

resume() (piwheels.tasks.Task method), 53
run() (piwheels.tasks.Task method), 53

S
save_rewrites_pending() (pi-

wheels.master.db.Database method), 39
save_rewrites_pending() (pi-

wheels.master.the_oracle.DbClient method),
43

SearchState (class in piwheels.states), 57
send() (piwheels.transport.Socket method), 51
send_addr_msg() (piwheels.transport.Socket

method), 51
send_msg() (piwheels.transport.Socket method), 51
send_multipart() (piwheels.transport.Socket

method), 51
Seraph (class in piwheels.master.seraph), 44
set_package_description() (pi-

wheels.master.db.Database method), 39
set_package_description() (pi-

wheels.master.the_oracle.DbClient method),
43

set_pypi_serial() (pi-
wheels.master.db.Database method), 39

set_pypi_serial() (pi-
wheels.master.the_oracle.DbClient method),
43

skip_package() (piwheels.master.db.Database
method), 39

skip_package() (pi-
wheels.master.the_oracle.DbClient method),
43

skip_package_version() (pi-
wheels.master.db.Database method), 39

skip_package_version() (pi-
wheels.master.the_oracle.DbClient method),
43

skip_slave() (pi-
wheels.master.slave_driver.SlaveDriver
method), 46

SlaveDriver (class in pi-
wheels.master.slave_driver), 44

SlaveState (class in piwheels.states), 55
SlaveStats (class in piwheels.states), 58
sleep_slave() (pi-

wheels.master.slave_driver.SlaveDriver
method), 46

Socket (class in piwheels.transport), 50
socket() (piwheels.tasks.Task method), 53
split() (in module piwheels.ranges), 59

subscribe() (piwheels.transport.Socket method),
51

T
Task (class in piwheels.tasks), 52
TaskQuit, 52
test_package() (piwheels.master.db.Database

method), 39
test_package() (pi-

wheels.master.the_oracle.DbClient method),
43

test_package_version() (pi-
wheels.master.db.Database method), 39

test_package_version() (pi-
wheels.master.the_oracle.DbClient method),
43

TheArchitect (class in pi-
wheels.master.the_architect), 44

TheOracle (class in piwheels.master.the_oracle), 40
TheSecretary (class in pi-

wheels.master.the_secretary), 49
TransferDone, 47
TransferError, 47
TransferIgnoreChunk, 47
transfers_done (piwheels.states.BuildState

attribute), 55
TransferState (class in piwheels.states), 56

U
unregister() (piwheels.transport.Poller method),

52
unsubscribe() (piwheels.transport.Socket

method), 51
unyank_version() (piwheels.master.db.Database

method), 39
unyank_version() (pi-

wheels.master.the_oracle.DbClient method),
43

update_build_queue() (pi-
wheels.master.the_architect.TheArchitect
method), 44

V
verified() (piwheels.states.FileState method), 54
verify() (piwheels.master.file_juggler.FsClient

method), 48
version

piw-remove command line option, 19

W
wake_slave() (pi-

wheels.master.slave_driver.SlaveDriver
method), 46

Y
yank_version() (piwheels.master.db.Database

method), 39

Index 71

Piwheels 0.17 Documentation, Release 0.17

yank_version() (pi-
wheels.master.the_oracle.DbClient method),
44

72 Index

	Overview
	piw-master
	piw-slave
	piw-monitor
	piw-sense
	piw-initdb
	piw-import
	piw-rebuild
	piw-remove
	piw-logger
	Development
	Module Reference
	License
	Python Module Index
	Index

