

piwheels

Welcome to the developer and administrator documentation for the piwheels
service. If you simply want to use piwheels to install Python packages more
quickly on your Raspberry Pi, head over to the piwheels homepage for the
relevant information.

However, if you want to set up your own instance of piwheels, or hack on the
piwheels codebase, you’re in the right place! These documents are far from
comprehensive and there’s really no substitute for just playing with the system
at first, but hopefully they’ll provide some answers to anyone who gets
confused wandering through the code (although much of the documentation is
derived from the code) and some starting points for those that want to get
involved. For reference, the piwheels code is available from GitHub
(naturally) which also hosts the issue tracker. Note there is a separate
issue tracker for reporting issues with packages built by piwheels.org, which
can be found at piwheels/packages.

Table of Contents

	1. Overview

	2. piw-master

	3. piw-slave

	4. piw-monitor

	5. piw-sense

	6. piw-initdb

	7. piw-import

	8. piw-rebuild

	9. piw-remove

	10. piw-logger

	11. Development

	12. Module Reference

	13. License

Indexes and Tables

	Index

	Search Page

1. Overview

The piwheels project is designed to automate building of wheels from packages
on PyPI for a set of pre-configured ABIs. As the name suggests, it was
originally built for Raspberry Pis but there’s nothing particular in the
codebase that should limit it to that platform. The system relies on the
following components:

	Component

	Description

	piw-master

	Coordinates the various build slaves, using the
database to store all relevant information, and
keeps the web site up to date.

	piw-slave

	Builds package on behalf of the piwheels master.
Is intended to run on separate machines to the
master, partly for performance and partly for
security.

	piw-monitor

	Provides a friendly curses-based UI for
interacting with the piwheels master.

	piw-sense

	Provides a friendly Sense HAT-based UI for
interacting with the piwheels master.

	piw-initdb

	A simple maintenance script for initializing or
upgrading the database to the current version.

	piw-import

	A tool for importing wheels manually into the
piwheels database and file-system.

	piw-remove

	A tool for manually removing builds from the
database and file-system.

	piw-rebuild

	A tool for regenerating certain elements of the
piwheels web-site.

	piw-logger

	A tool for transferring download statistics into
the piwheels database.

	database server

	Currently only PostgreSQL is supported (and
frankly that’s all we’re ever likely to support).
This provides the master’s data store.

	web server

	Anything that can serve from a static directory
is fine here. We use Apache in production.

Note

At present the master is a monolithic application, but the internal
architecture is such that it could, in future, be split into three parts:
one that deals exclusively with the database server, one that deals
exclusively with the file-system served by the web server, and one that
talks to the piwheels slave and monitor processes.

2. piw-master

The piw-master script is intended to be run on the database and file-server
machine. It is recommended you do not run piw-slave on the same machine as the
piw-master script. The database specified in the configuration must exist and
have been configured with the piw-initdb script. It is recommended you run
piw-master as an ordinary unprivileged user, although obviously it will need
write access to the output directory.

2.1. Synopsis

piw-master [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-d DSN]
 [-o PATH] [--dev-mode] [--pypi-xmlrpc URL]
 [--pypi-simple URL] [--status-queue ADDR]
 [--control-queue ADDR] [--import-queue ADDR]
 [--log-queue ADDR] [--slave-queue ADDR] [--file-queue ADDR]
 [--web-queue ADDR] [--builds-queue ADDR] [--db-queue ADDR]
 [--fs-queue ADDR] [--stats-queue ADDR]

2.2. Description

	
-h, --help

	Show this help message and exit

	
--version

	Show program’s version number and exit

	
-c FILE, --configuration FILE

	Specify a configuration file to load

	
-q, --quiet

	Produce less console output

	
-v, --verbose

	Produce more console output

	
-l FILE, --log-file FILE

	Log messages to the specified file

	
-d DSN, --dsn DSN

	The database to use; this database must be configured with piw-initdb and
the user must not be a PostgreSQL superuser (default:
postgres:///piwheels)

	
-o PATH, --output-path PATH

	The path under which the website should be written; must be writable by the
current user

	
--dev-mode

	Run the master in development mode, which reduces some timeouts and tweaks
some defaults

	
--pypi-xmlrpc URL

	The URL of the PyPI XML-RPC service (default: https://pypi.python.org/pypi)

	
--pypi-simple URL

	The URL of the PyPI simple API (default: https://pypi.python.org/simple)

	
--status-queue ADDR

	The address of the queue used to report status to monitors (default:
ipc:///tmp/piw-status); this is usually an ipc address

	
--control-queue ADDR

	The address of the queue a monitor can use to control the master (default:
ipc:///tmp/piw-control); this is usually an ipc address

	
--import-queue ADDR

	The address of the queue used by piw-import (default:
ipc:///tmp/piw-import); this should always be an ipc address

	
--log-queue ADDR

	The address of the queue used by piw-logger (default:
ipc:///tmp/piw-logger); this should always be an ipc address

	
--slave-queue ADDR

	The address of the queue used to talk to the build slaves (default:
tcp://*:5555); this is usually a tcp address

	
--file-queue ADDR

	The address of the queue used to transfer files from slaves (default:
tcp://*:5556); this is usually a tcp address

	
--builds-queue ADDR

	The address of the queue used to store pending builds (default:
inproc://builds)

	
--db-queue ADDR

	The address of the queue used to talk to the database server (default:
inproc://db)

	
--fs-queue ADDR

	The address of the queue used to talk to the file- system server (default:
inproc://fs)

	
--stats-queue ADDR

	The address of the queue used to send statistics to the collator task
(default: inproc://stats)

2.3. Deployment

A typical deployment of the master service on a Raspbian server goes something
like this (each step assumes you start as root):

	Install the pre-requisite software:

apt install postgresql-9.6 apache2 python3-psycopg2 python3-geoip
apt install python3-sqlalchemy python3-urwid python3-zmq python3-voluptuous python3-chameleon
pip install piwheels[monitor,master,logger]

	Set up the (unprivileged) piwheels user and the output directory:

groupadd piwheels
useradd -g piwheels -m piwheels
mkdir /var/www/piwheels
chown piwheels:piwheels /var/www/piwheels

	Set up the database:

su - postgres
$ createuser piwheels
$ createdb -O postgres piwheels
$ piw-initdb

	Set up the web server:

	Point the document root to the output path (/var/www/piwheels
above, but it can be anywhere your piwheels user has write access to;
naturally you want to make sure your web-server’s user only has read
access to the location).

	Set up SSL for the web server (e.g. with Let’s Encrypt; the
dehydrated utility is handy for getting and maintaining the SSL
certificates).

	Start the master running (it’ll take quite a while to populate the list of
packages and versions from PyPI on the initial run so get this going before
you start bringing up build slaves):

su - piwheels
$ piw-master -v

	Deploy some build slaves; see piw-slave for deployment instructions.

2.4. Automatic start

If you wish to ensure that the master starts on every boot-up, you may wish to
define a systemd unit for it. Example units can be also be found in the root of
the piwheels repository:

wget https://raw.githubusercontent.com/piwheels/piwheels/master/piwheels-master.service
cp piwheels-master.service /etc/systemd/system/
systemctl daemon-reload
systemctl enable piwheels-master
systemctl start piwheels-master

2.5. Upgrades

The master will check that build slaves have the same version number and will
reject them if they do not. Furthermore, it will check the version number in
the database’s configuration table matches its own and fail if it does not.
Re-run the piw-initdb script as the PostgreSQL super-user to upgrade the
database between versions (downgrades are not supported, so take a backup
first!).

3. piw-slave

The piw-slave script is intended to be run on a standalone machine to build
packages on behalf of the piw-master script. It is intended to be run as an
unprivileged user with a clean home-directory. Any build dependencies you wish
to use must already be installed. The script will run until it is explicitly
terminated, either by Ctrl+C, SIGTERM, or by the remote piw-master script.

3.1. Synopsis

piw-slave [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-m HOST]
 [-t DURATION]

3.2. Description

	
-h, --help

	Show this help message and exit

	
--version

	Show program’s version number and exit

	
-c FILE, --configuration FILE

	Specify a configuration file to load

	
-q, --quiet

	Produce less console output

	
-v, --verbose

	Produce more console output

	
-l FILE, --log-file FILE

	Log messages to the specified file

	
-m HOST, --master HOST

	The IP address or hostname of the master server (default: localhost)

	
-t DURATION, --timeout DURATION

	The time to wait before assuming a build has failed (default: 3h)

3.3. Deployment

Our typical method of deployment is to spin up a new Pi as a build slave
(through Mythic Beasts’ control panel) then execute a script to install the
piwheels code, and all the build dependencies that we feel are reasonable to
support under various Raspbian versions. The deployment script can be found
in the root of the piwheels repository:

wget https://raw.githubusercontent.com/piwheels/piwheels/master/deploy_slave.sh
chmod +x deploy_slave.sh
./deploy_slave.sh

However, you will very likely wish to customize this script for your own
purposes, e.g. to support a different set of dependencies, or to customize the
typical build environment.

Once the script is complete, simply switch to the unprivileged user used to
run the build slave, and execute piw-slave. For example, assuming the
master’s IP address is 10.0.0.1:

su - piwheels
$ piw-slave -m 10.0.0.1

3.4. Automatic start

If you wish to ensure that the build slave starts on every boot-up, you may
wish to define a systemd unit for it. Example units can be also be found in
the root of the piwheels repository:

wget https://raw.githubusercontent.com/piwheels/piwheels/master/piwheels-slave.service
cp piwheels-slave.service /etc/systemd/system/
systemctl daemon-reload
systemctl enable piwheels-slave
systemctl start piwheels-slave

Warning

Be aware that this example unit forces a reboot in the case that the build
slave fails (as occasionally happens with excessively complex packages).

Because of this you must ensure that the slave executes successfully
prior to installing the unit, otherwise you’re liable to leave your build
slave in permanent reboot cycle. This isn’t a huge issue for a build slave
that’s physically in front of you (from which you can detach and tweak the
storage), but it may be an issue if you’re dealing with a cloud builder.

4. piw-monitor

The piw-monitor application is used to monitor (and optionally control) the
piw-master script. Upon startup it will request the status of all build slaves
currently known to the master, and will then continually update its display as
the slaves progress through builds. The controls at the bottom of the display
allow the administrator to pause or resume the master script, kill build
slaves that are having issues (e.g. excessive resource consumption from a huge
build) or terminate the master itself.

4.1. Synopsis

piw-monitor [-h] [--version] [-c FILE] [--status-queue ADDR]
 [--control-queue ADDR]

4.2. Description

	
-h, --help

	Show this help message and exit

	
--version

	Show program’s version number and exit

	
-c FILE, --configuration FILE

	Specify a configuration file to load

	
--status-queue ADDR

	The address of the queue used to report status to monitors (default:
ipc:///tmp/piw-status)

	
--control-queue ADDR

	The address of the queue a monitor can use to control the master (default:
ipc:///tmp/piw-control)

4.3. Usage

The monitor application should be started on the same machine as the master
after the piw-master script has been started. After initialization it will
request the current status of all build slaves from the master, displaying this
in a list in the middle of the screen.

The Tab key can be used to navigate between the list of build slaves and
the controls at the bottom of the screen. Mouse control is also supported,
provided the terminal emulator supports it. Finally, hot-keys for all actions
are available. The actions are as follows:

4.3.1. Pause

Hotkey: p

Pauses operations on the master. This causes Cloud Gazer to stop
querying PyPI, Slave Driver to return “SLEEP” in response to any build
slave requesting new packages, and so on. This is primarily a debugging tool to
permit the developer to peek at the system in a more or less frozen state
before resuming things.

4.3.2. Resume

Hotkey: r

Resumes operations on the master when paused.

4.3.3. Kill Slave

Hotkey: k

The next time the selected build slave requests a new package (with “IDLE”) the
master will return “BYE” indicating the slave should terminate. Note that this
cannot kill a slave in the middle of a build (that would require a more complex
asynchronous protocol in Slave Driver), but is useful for shutting
things down in an orderly fashion.

4.3.4. Terminate Master

Hotkey: t

Tells the master to shut itself down. In a future version, the master should
request all build slaves to terminate as well, but currently this is
unimplemented.

4.3.5. Quit

Hotkey: q

Terminate the monitor. Note that this won’t affect the master.

5. piw-sense

The piw-sense application is an alternative monitor for the piw-master script
that uses the Raspberry Pi Sense HAT as its user interface. Upon startup it
will request the status of all build slaves currently known to the master, and
will then continually update its display as the slaves progress through builds.
The Sense HAT’s joystick can be used to navigate information about current
builds, and kill builds slaves that are having issues, or terminate the master
itself.

5.1. Synopsis

piw-sense [-h] [--version] [-c FILE] [--status-queue ADDR]
 [--control-queue ADDR] [-r DEGREES]

5.2. Description

	
-h, --help

	Show this help message and exit

	
--version

	Show program’s version number and exit

	
-c FILE, --configuration FILE

	Specify a configuration file to load

	
--status-queue ADDR

	The address of the queue used to report status to monitors (default:
ipc:///tmp/piw-status)

	
--control-queue ADDR

	The address of the queue a monitor can use to control the master (default:
ipc:///tmp/piw-control)

	
-r DEGREES, --rotate DEGREES

	The rotation of the HAT in degrees; must be 0 (the default), 90, 180,
or 270

5.3. Usage

The Sense monitor can be started on the same machine as the master after the
piw-master script has been started. After initialization it will request
the current status of all build slaves from the master.

5.3.1. Layout

The top three (normally blue) rows of the display are used for some important
statistics:

	The top row represents the ping time from the master, or more specifically
the time since the last message was received. This will continually increase
(changing white), and reset with each message received. If 30 seconds elapse
without any messages being received, this row will pulse red until another
message is received, resetting the count.

	The second row represents available disk space for the output directory on
the master. White pixels represent remaining space, and the scale is simply
percentage (all blue = 0%, all white = 100%).

	The third row represents the number of pending builds on the master. The
scale is one white pixel = 8 builds in the queue (with partial shades
representing <8 builds).

The remaining rows represent all build slaves. Each pixel represents a single
build slave, working vertically then horizontally. Build slaves are sorted
first by ABI, then by label (as in piw-monitor).

	A gray pixel indicates an idle build slave.

	A green pixel indicates an active build.

	A blue pixel indicates an active file transfer after a successful build.

	A purple pixel indicates a build slave cleaning up after a build.

	A yellow pixel indicates an active build that’s been running for more than
15 minutes; not necessarily a problem but longer than average.

	A red pixel indicates a build slave that’s either timed out or been
terminated; it should disappear from the display within a few seconds.

5.3.2. Navigation

The pixel that pulses white indicates your current position, which can be moved
with the Sense HAT joystick. Pressing the joystick in when a build-slave is
selected (indicated by it pulsing white) will bring up detailed information on
that build slave.

Scroll left and right to navigate through the build-slave information (label,
ABI, current task, and kill option). Press the joystick in to return to the
main display (optionally killing the build slave if the kill screen is
selected).

Scroll the cursor off the top of the display to go to detailed statistics
information. Scroll left and right to navigate through the available statistics
(ping time, disk free, queue size, build rate, total build time, and total
build size). Most statistics are displayed as scrolling text, and a background
fill representing the information graphically. Scroll down to return to the
main screen.

Scroll the cursor off the bottom of the display to go to the quit and terminate
options (scroll left and right to navigate between them). Press the joystick in
to activate either option, or scroll up to return to the main screen.

6. piw-initdb

The piw-initdb script is used to initialize or upgrade the piwheels master
database. The target PostgreSQL database must already exist, and the DSN
should connect as a cluster superuser (e.g. the postgres user), in contrast to
the piw-master script which should not use the cluster superuser. The script
will prompt before making any permanent alterations, and all actions will be
executed within a single transaction so that in the event of failure the
database will be left unchanged. Nonetheless, it is strongly recommended you
take a backup of your database before using this script for upgrades.

6.1. Synopsis

piw-initdb [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-d DSN]
 [-u NAME] [-y]

6.2. Description

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-c FILE, --configuration FILE

	Specify a configuration file to load

	
-q, --quiet

	produce less console output

	
-v, --verbose

	produce more console output

	
-l FILE, --log-file FILE

	log messages to the specified file

	
-d DSN, --dsn DSN

	The database to create or upgrade; this DSN must connect as the cluster
superuser (default: postgres:///piwheels)

	
-u NAME, --user NAME

	The name of the ordinary piwheels database user (default: piwheels); this
must not be a cluster superuser

	
-y, --yes

	Proceed without prompting before init/upgrades

6.3. Usage

This script is intended to be used after installation to initialize the
piwheels master database. Note that it does not create the database or the
users for the database. It merely creates the tables, views, and other
structures within an already existing database. See the Overview chapter
for typical usage.

The script can also be used to upgrade an existing piwheels database to the
latest version. The update scripts used attempt to preserve all data, and all
upgrades are performed in a single transaction so that, theoretically, if
anything goes wrong the database should be rolled back to its original state.
However, it is still strongly recommended that you back up your master database
before proceeding with any upgrade.

7. piw-import

The piw-import script is used to inject the specified file(s) manually into the
piwheels database and file-system. This script must be run on the same node as
the piw-master script. If multiple files are specified, they are registered
as produced by a single build.

7.1. Synopsis

piw-import [-h] [--version] [-c FILE] [-q] [-v] [-l FILE]
 [--package PACKAGE] [--package-version VERSION] [--abi ABI]
 [--duration DURATION] [--output FILE] [-y] [-d]
 [--import-queue ADDR]
 files [files ...]

7.2. Description

	
-h, --help

	Show this help message and exit

	
--version

	Show program’s version number and exit

	
-c FILE, --configuration FILE

	Specify a configuration file to load

	
-q, --quiet

	Produce less console output

	
-v, --verbose

	Produce more console output

	
-l FILE, --log-file FILE

	Log messages to the specified file

	
--package PACKAGE

	The name of the package to import; if omitted this will be derived from the
file(s) specified

	
--package-version VERSION

	The version of the package to import; if omitted this will be derived from
the file(s) specified

	
--abi ABI

	The ABI of the package to import; if omitted this will be derived from the
file(s) specified

	
--duration DURATION

	The time taken to build the package (default: 0s)

	
--output FILE

	The filename containing the build output to insert into the database; if
this is omitted an appropriate message will be inserted instead

	
-y, --yes

	Run non-interactively; never prompt during operation

	
-d, --delete

	Remove the specified file(s) after a successful import; if the import
fails, no files will be removed

	
--import-queue ADDR

	The address of the queue used by piw-import (default:
(ipc:///tmp/piw-import); this should always be an ipc address

7.3. Usage

This utility is used to import wheels manually into the system. This is useful
with packages which have no source available on PyPI, or binary-only packages
from third parties. If invoked with multiple files, all files will be
associated with a single “build” and the build will be for the package and
version of the first file specified. No checks are made for equality of package
name or version (as several packages on PyPI would violate such a rule!).

The utility can be run in a batch mode with --yes but still requires
invoking once per build required (you cannot register multiple builds in a
single invocation).

The return code will be 0 if the build was registered and all files were
uploaded successfully. Additionally the --delete option can be
specified to remove the source files once all uploads are completed
successfully. If anything fails, the return code will be non-zero and no files
will be deleted.

The utility should only ever be run directly on the master node (opening the
import queue to other machines is a potential security risk).

8. piw-rebuild

The piw-rebuild script is used to inject rebuild requests for various web
pages into the piwheels system. This script must be run on the same node as
the piw-master script.

8.1. Synopsis

piw-rebuild [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-y]
 [--import-queue ADDR]
 part [package]

8.2. Description

	
-h, --help

	Show this help message and exit

	
--version

	Show program’s version number and exit

	
-c FILE, --configuration FILE

	Specify a configuration file to load

	
-q, --quiet

	Produce less console output

	
-v, --verbose

	Produce more console output

	
-l FILE, --log-file FILE

	Log messages to the specified file

	
-y, --yes

	Run non-interactively; never prompt during operation

	
--import-queue ADDR

	The address of the queue used by piw-rebuild (default:
(ipc:///tmp/piw-import); this should always be an ipc address

8.3. Usage

This utility is used to request rebuilds of parts of the piwheels website. This
is primarily useful after manual fixes to the database, manipulation of the
file-system, or after large-scale upgrades which require rebuilding many pages.

The mandatory part parameter can be one of the following values, which
specify which part of the website to rebuild:

	Part

	Description

	home

	Rebuild the home-page (/index.html)

	search

	Rebuild the JSON search-index (/packages.json)

	project

	Rebuild the project-page for the specified package
(/project/package/index.html)

	index

	Rebuild the simple-index and the project-page
for the specified package (/simple/package/index.html
and /project/package/index.html)

If part is “project” or “index” you may optionally specify a package name
for which to rebuild the specified part. If the package name is omitted, the
utility will request a rebuild of the specified part for all known packages
in the system.

Warning

In the case a rebuild of all packages is requested, you will be
prompted to make sure you wish to continue (this option can take hours to
process on a system with many builds). The --yes option can be
used to skip this prompt but should be used carefully!

Note that the utility only requests the rebuild of the specified part. This
request will be queued, and acted upon as soon as The Scribe reaches it
but there is no guarantee this has occurred by the time the utility exits. The
return code will be 0 if the rebuild request was queued successfully. If
anything fails the return code will be non-zero and the request may or may not
have been queued.

The utility should only ever be run directly on the master node (opening the
import queue to other machines is a potential security risk).

9. piw-remove

The piw-remove script is used to manually remove a version of a package from
the system. All builds for the specified version will be forgotten, and all
files generated by such builds will be deleted.

By default, the version removed will be deleted entirely (not marked to
skip). Optionally, you can provide a skip reason; in this case the version will
not be deleted (though its builds and files will), but will be left marked to
skip to prevent future rebuilds.

9.1. Synopsis

piw-remove [-h] [--version] [-c FILE] [-q] [-v] [-l FILE] [-y]
 [-s REASON] [--import-queue ADDR]
 package version

9.2. Description

	
package

	The name of the package to remove

	
version

	The version of the package to remove

	
-h, --help

	Show this help message and exit

	
--version

	Show program’s version number and exit

	
-c FILE, --configuration FILE

	Specify a configuration file to load

	
-q, --quiet

	Produce less console output

	
-v, --verbose

	Produce more console output

	
-l FILE, --log-file FILE

	Log messages to the specified file

	
-y, --yes

	Run non-interactively; never prompt during operation

	
-s REASON, --skip REASON

	Leave the version in place, but marked with a reason to prevent future
build attempts

	
--import-queue ADDR

	The address of the queue used by piw-remove (default:
(ipc:///tmp/piw-import); this should always be an ipc address

9.3. Usage

This utility is typically used in response to a request from a package
maintainer to remove a specific build from the system. Usually because the
presence of a piwheels build is causing issues in and of itself.

Note

Older versions of piwheels didn’t heed PyPI deletion messages. This is no
longer the case and this utility is no longer required to manually remove
deleted packages.

The utility can be run in a batch mode with --yes but still requires
invoking once per deletion required (you cannot remove multiple versions in a
single invocation).

The return code will be 0 if the version was successfully removed. If anything
fails, the return code will be non-zero and no files should be deleted (but
this cannot be guaranteed in all circumstances).

The utility should only ever be run directly on the master node (opening the
import queue to other machines is a potential security risk).

10. piw-logger

The piw-logger script is intended for use as an Apache “piped log script” but
can also be used to feed pre-existing Apache logs to the master by feeding
logs to the script’s stdin. This script must be run on the same node as the
piw-master script.

10.1. Synopsis

piw-logger [-h] [--version] [-c FILE] [-q] [-v] [-l FILE]
 [--format FORMAT] [--log-queue ADDR] [--drop]
 [files [files ...]]

10.2. Description

	
files

	The log file(s) to load into the master; if omitted or “-” then stdin will
be read which is the default for piped log usage

	
-h, --help

	Show this help message and exit

	
--version

	Show program’s version number and exit

	
-c FILE, --configuration FILE

	Specify a configuration file to load

	
-q, --quiet

	Produce less console output

	
-v, --verbose

	Produce more console output

	
-l FILE, --log-file FILE

	Log messages to the specified file

	
--format FORMAT

	The Apache log format that log lines will be expected to be in (default:
combined); the short-cuts common, combined and common_vhost can be used in
addition to Apache LogFormat strings

	
--log-queue ADDR

	The address of the queue used by piw-logger (default:
(ipc:///tmp/piw-logger); this should always be an ipc address

	
--drop

	Drop log records if unable to send them to the master after a short
timeout; this should generally be specified when piw-logger is
used as a piped log script

10.3. Usage

This utility is typically used to pipe logs from a web-server, such as
Apache into the piwheels database where they can be used for analysis, and
to keep the stats on the homepage up to date. Apache provides a capability to
pipe all logs to a given script which can be used directly with
piw-logger.

A typical configuration under a Debian-like operating system might use the
Apache CustomLog directive as follows, within the Apache virtual host
reponsible for serving files to pip clients:

ErrorLog ${APACHE_LOG_DIR}/ssl_error.log
CustomLog ${APACHE_LOG_DIR}/ssl_access.log combined
CustomLog "|/usr/local/bin/piw-logger --drop" combined

11. Development

The main GitHub repository for the project can be found at:

https://github.com/piwheels/piwheels

After cloning, we recommend you set up a virtualenv for development and then
execute make develop within that virtualenv. This should install all
requirements for executing all tools, building the documentation and executing
the test suite.

11.1. Testing

Executing the test suite requires that you have a local PostgreSQL
installation configured with an unprivileged user, a privileged super user,
and a test database.

The test suite uses environment variables to discover the name of the test
database, and the aforementioned users. See the top of
tests/conftest.py for more details. A typical execution of the test
suite might look as follows:

$ export PIWHEELS_TESTDB=piwtest
$ export PIWHEELS_USER=piwheels
$ export PIWHEELS_PASS=piwheels
$ export PIWHEELS_SUPERUSER=piwsuper
$ export PIWHEELS_SUPERPASS=foobar
$ cd piwheels
$ make test

You may wish to construct a script for exporting the environment variables, or
add these values to your ~/.bashrc.

Note

If you are not using your local PostgreSQL installation for anything else
you may wish to set fsync=off and synchronous_commit=off in your
local postgresql.conf to speed up execution of the test suite. Do
NOT do this on any production PostgreSQL server!

11.2. Design

Although the piwheels master appears to be a monolithic script, it’s actually
composed of numerous (often extremely simple) tasks. Each task runs its own
thread and all communication between tasks takes place over ZeroMQ sockets.
This is also how communication occurs between the master and the piw-slave,
and the piw-monitor.

The following diagram roughly illustrates all the tasks in the system
(including those of the build slaves and the monitor), along with details of
the type of ZeroMQ socket used to communicate between them:

[image: _images/master_arch.svg]

It may be confusing that the file server and database server appear to be
separate to the master in the diagram. This is deliberate as the system’s
architecture is such that certain tasks can be easily broken off into entirely
separate processes (potentially on separate machines), if required in future
(either for performance or security reasons).

11.3. Tasks

The following sections document the tasks shown above (listed from the “front”
at PyPI to the “back” at Users):

11.3.1. Cloud Gazer

Implemented in: piwheels.master.cloud_gazer.CloudGazer.

This task is the “front” of the system. It follows PyPI’s event log for new
package and version registrations, and writes those entries to the database.
It does this via The Oracle.

11.3.2. The Oracle

Implemented in: piwheels.master.the_oracle.TheOracle.

This task is the main interface to the database. It accepts requests from other
tasks (“register this new package”, “log this build”, “what files were built
with this package”, etc.) and executes them against the database. Because
database requests are extremely variable in their execution time, there are
actually several instances of the oracle which sit behind Seraph.

11.3.3. Seraph

Implemented in: piwheels.master.seraph.Seraph.

Seraph is a simple load-balancer for the various instances of
The Oracle. This is the task that actually accepts database requests.
It finds a free oracle and passes the request along, passing back the reply
when it’s finished.

11.3.4. The Architect

Implemented in: piwheels.master.the_architect.TheArchitect.

This task is the final database related task in the master script. Unlike
The Oracle it periodically queries the database for the packages that
need building and passes this information along to the Slave Driver.

11.3.5. Slave Driver

Implemented in: piwheels.master.slave_driver.SlaveDriver.

This task is the main coordinator of the build slaves’ activities. When a build
slave first comes online it introduces itself to this task (with information
including the ABI it can build for), and asks for a package to build. If there
is a pending package matching the build slave’s ABI, it will be told to build
that package.

Periodically, The Architect refreshes this task’s list of packages that
require building.

Eventually the build slave will communicate whether or not the build succeeded,
along with information about the build (log output, files generated, etc.).
This task writes this information to the database via The Oracle. If the
build was successful, it informs the File Juggler that it should expect
a file transfer from the relevant build slave.

Finally, when all files from the build have been transferred, the Slave Driver
informs the The Scribe that the package’s index and project page will
need (re)writing. It also periodically informs Big Brother of the size
of the build queue.

11.3.6. Mr. Chase

Implemented in: piwheels.master.mr_chase.MrChase.

This task talks to piw-import and handles importing builds manually
into the system. It is essentially a cut-down version of the
Slave Driver with a correspondingly simpler protocol. It is also the
end-point for piw-rebuild and piw-remove.

This task writes information to the database via The Oracle. If the
imported build was successful, it informs the File Juggler that it
should expect a file transfer from the importer.

Finally, when all files from the build have been transferred, it informs the
The Scribe that the package’s index and project pages will need
(re)writing.

11.3.7. File Juggler

Implemented in: piwheels.master.file_juggler.FileJuggler.

This task handles file transfers from the build slaves to the master. Files are
transferred in multiple (relatively small) chunks and are verified with the
hash reported by the build slave (retrieved from the database via
The Oracle).

11.3.8. Big Brother

Implemented in: piwheels.master.big_brother.BigBrother.

This task is a bit of a miscellaneous one. It sits around periodically
generating statistics about the system as a whole (number of files, number of
packages, number of successful builds, number of builds in the last hour, free
disk space, etc.) and sends these off to the The Scribe.

11.3.9. The Scribe

Implemented in: piwheels.master.the_scribe.TheScribe.

This task generates the web output for piwheels. It generates the home-page
with statistics from Big Brother, the overall package index, individual
package file lists, and project pages with messages from Slave Driver.

11.3.10. The Secretary

Implemented in piwheels.master.the_secretary.TheSecretary.

This task sits in front of The Scribe and attempts to mitigate many of
the repeated requests that typically get sent to it. For example, project pages
(which are relatively expensive to generate, in database terms), may need
regenerating every time a file is registered against a package version.

This often happens in a burst when a new package version is released, resulting
in several (redundant) requests to re-write the same page with minimally
changed information. The secretary buffers up such requests, eliminating
duplicates before finally passing them to The Scribe for processing.

11.4. Queues

It should be noted that the diagram omits several queues for the sake of
brevity. For instance, there is a simple PUSH/PULL control queue between the
master’s “main” task and each sub-task which is used to relay control messages
like PAUSE, RESUME, and QUIT.

Most of the protocols used by the queues are (currently) undocumented with the
exception of those between the build slaves and the Slave Driver and
File Juggler tasks (documented in the piw-slave chapter).

However, all protocols share a common basis: messages are lists of Python
objects. The first element is always string containing the action. Further
elements are parameters specific to the action. Messages are encoded with
CBOR.

11.5. Protocols

The following sections document the protocols used between the build slaves and
the three sub-tasks that they talk to in the piw-master. Each protocol
operates over a separate queue. All messages in the piwheels system follow a
similar structure of being a tuple containing:

	A short unicode string indicating what sort of message it is.

	Data. The structure of the data is linked to the type of the message, and
validated on both transmission and reception (see piwheels.protocols
for more information).

For example the message telling a build slave what package and version to build
looks like this in Python syntax:

['BUILD', 'numpy', '1.14.0']

If a message is not associated with any data whatsoever, it is transmitted as a
simple unicode string (without the list encapsulation). The serialization
format for all messages in the system is currently CBOR.

11.5.1. Slave Driver

The queue that talks to Slave Driver is a ZeroMQ REQ socket, hence the
protocol follows a strict request-reply sequence which is illustrated below:

[image: _images/slave_protocol.svg]

	The new build slave sends “HELLO” with data [build_timeout,
master_timeout, py_version_tag, abi_tag, platform_tag, label, os_name,
os_version, board_revision, board_serial] where:

	build_timeout is the slave’s configured timeout (the length of time
after which it will assume a build has failed and attempt to terminate it)
as a timedelta.

	master_timeout is the maximum length of time the slave will wait for
communication from the master. After this timeout it will assume the
connection has failed, terminate and clean-up any on-going build, then
attempt to restart the connection to the master.

	py_version_tag is the python version the slave will build for (e.g.
“27”, “35”, etc.)

	abi_tag is the ABI the slave will build for (e.g. “cp35m”)

	platform_tag is the platform of the slave (e.g. “linux_armv7l”)

	label is an identifying label for the slave (e.g. “slave2”); note that
this label doesn’t have to be anything specific, it’s purely a convenience
for administrators displayed in the monitor. In the current implementation
this is the unqualified hostname of the slave

	os_name is a string identifying the operating system, e.g. “Raspbian
GNU/Linux”.

	os_version is a string identifying the release of the operating system,
e.g. “10 (buster)”.

	board_revision is a code indicating the revision of the board that the
slave is running upon, e.g. “c03111” for a Raspberry Pi 4B.

	board_serial is the serial number of the board that the slave is running
upon.

	The master replies sends “ACK” with data [slave_id, pypi_url] where
slave_id is an integer identifier for the slave. Strictly speaking, the
build slave doesn’t need this identifier but it can be helpful for admins or
developers to see the same identifier in logs on the master and the slave
which is the only reason it is communicated.

The pypi_url is the URL the slave should use to fetch packages from PyPI.

	The build slave sends “IDLE” to indicate that it is ready to accept a
build job. The “IDLE” message is accompanied with the data [now,
disk_total, disk_free, mem_total, mem_free, load_avg, cpu_temp] where:

	now is a datetime indicating the current time on the
build slave.

	disk_total is the total size (in bytes) of the file-system used to build
wheels.

	disk_free is the number of bytes free in the file-system used to build
wheels.

	mem_total is the total size (in bytes) of the RAM on the build slave.

	mem_free is the number of bytes of RAM currently available (not
necessarily unused, but potentially useable by builds).

	load_avg is the one minute load average.

	cpu_temp is the temperature, in degrees celsius of the CPU.

	The master can reply with “SLEEP” which indicates that no jobs are
currently available for that slave (e.g. the master is paused, or the build
queue is empty, or there are no builds for the slave’s particular ABI at
this time). In this case the build slave should pause a while (the current
implementation waits 10 seconds) before retrying “IDLE”.

	The master can also reply with “DIE” which indicates the build slave should
shutdown. In this case, after cleaning up any resources the build slave
should send back “BYE” and terminate (generally speaking, whenever the slave
terminates it should send “BYE” no matter where in the protocol it occurs;
the master will take this as a sign of termination).

	The master can also reply “BUILD” with data [package, version] where
package is the name of a package to build and version is the version to
build. At this point, the build slave should attempt to locate the package
on PyPI and build a wheel from it.

	While the build is underway, the slave must periodically ping the master
with the “BUSY” message, which is accompanied by the exact same stats as in
the “IDLE” message.

	If the master wishes the build slave to continue with the build it will
reply with “CONT”. If the master wants to build slave to terminate the build
early it will reply with “DONE” (goto step 13).

	Assuming the master doesn’t request termination of the build, eventually it
will finish. In response to the next “CONT” message, the slave sends “BUILT”
with data [status, duration, output, files]:

	status is True if the build succeeded and False otherwise.

	duration is a timedelta value indicating the length
of time it took to build in seconds.

	output is a string containing the complete build log.

	files is a list of file state tuples containing the following
fields in the specified order:

	filename is the filename of the wheel.

	filesize is the size in bytes of the wheel.

	filehash is the SHA256 hash of the wheel contents.

	package_tag is the package tag extracted from the filename.

	package_version_tag is the version tag extracted from the filename.

	py_version_tag is the python version tag extracted from the
filename.

	abi_tag is the ABI tag extracted from the filename (sanitized).

	platform_tag is the platform tag extracted from the filename.

	dependencies is a set of dependency tuples containing the
following fields in the specified order:

	tool is the name of the tool used to install the dependency

	package is the name of the package to install with the tool

	If the build succeeded, the master will send “SEND” with data filename
where filename is one of the names transmitted in the prior “BUILT”
message.

	At this point the slave should use the File Juggler
protocol documented below to transmit the contents of the specified file to
the master. When the file transfer is complete, the build slave sends
“SENT” to the master.

	If the file transfer fails to verify, or if there are more files to send
the master will repeat the “SEND” message. Otherwise, if all transfers have
completed and have been verified, the master replies with “DONE”.

	The build slave is now free to destroy all resources associated with the
build, and returns to step 3 (“IDLE”).

If at any point, the master takes longer than master_timeout (default: 5
minutes) to respond to a slave’s request, the slave will assume the master has
disappeared. If a build is still active, it will be cleaned up and terminated,
the connection to the master will be closed, the slave’s ID will be reset and
the slave must restart the protocol from the top (“HELLO”).

This permits the master to be upgraded or replaced without having to shutdown
and restart the slaves manually. It is possible that the master is restarted
too fast for the slave to notice. In this case the slave’s next message will be
mis-interpreted by the master as an invalid initial message, and it will be
ignored. However, this is acceptable behaviour as the re-connection protocol
described above will then effectively restart the slave after the
master_timeout has elapsed.

11.5.2. Mr Chase (importing)

The queue that talks to Mr. Chase is a ZeroMQ REQ socket, hence the
protocol follows a strict request-reply sequence which is illustrated below
(see below for documentation of the “REMOVE” path):

[image: _images/import_protocol.svg]

	The importer sends “IMPORT” with data [slave_id, package, version,
abi_tag, status, duration, output, files]:

	slave_id is the integer id of the build slave that created the wheel.
This is usually 0 and is ignored by the master anyway.

	package is the name of the package that the build is for.

	version is the version of the package that the build is for.

	abi_tag is either None, indicating that the master should use the
“default” (minimum) build ABI registered in the system, or is a string
indicating the ABI that the build was attempted for.

	status is True if the build succeeded and False otherwise.

	duration is a float value indicating the length of time it took
to build in seconds.

	output is a string containing the complete build log.

	files is a list of file state tuples containing the following fields
in the specified order:

	filename is the filename of the wheel.

	filesize is the size in bytes of the wheel.

	filehash is the SHA256 hash of the wheel contents.

	package_tag is the package tag extracted from the filename.

	package_version_tag is the version tag extracted from the filename.

	py_version_tag is the python version tag extracted from the
filename.

	abi_tag is the ABI tag extracted from the filename (sanitized).

	platform_tag is the platform tag extracted from the filename.

	dependencies is a set of dependency tuples containing the
following fields in the specified order:

	tool is the name of the tool used to install the dependency

	package is the name of the package to install with the tool

	If the import information is insufficient or incorrect, the master will send
“ERROR” with data message which is the description of the error that
occurred.

	If the import information is okay, the master will send “SEND” with data
filename for each file mentioned in the build.

	At this point the importer should use the File Juggler
protocol to transmit the contents of the specified file to the master. When
the file transfer is complete, the importer sends “SENT” to the
master.

	If the file transfer fails to verify, or if there are more files to send the
master will repeat the “SEND” message. Otherwise, if all transfers have
completed and have been verified, the master replies with “DONE”.

	The importer is now free to remove all files associated with the build, if
requested to.

11.5.3. Mr Chase (removing)

The queue that talks to Mr. Chase is a ZeroMQ REQ socket, hence the
protocol follows a strict request-reply sequence which is illustrated below
(see above for documentation of the IMPORT path):

[image: _images/import_protocol.svg]

	The utility sends “REMOVE” with data [package, version, skip]:

	package is the name of the package to remove.

	version is the version of the package to remove.

	skip is a string containing the reason the version should never be
built again, or is a blank string indicating the version should be
rebuilt.

	If the removal fails (e.g. if the package or version does not exist), the
master will send “ERROR” with data message (a string describing the
error that occurred).

	If the removal is successful, the master replies with “DONE”.

11.5.4. Mr Chase (rebuilding)

The queue that talks to Mr. Chase is a ZeroMQ REQ socket, hence the
protocol follows a strict request-reply sequence which is illustrated below
(see above for documentation of the IMPORT path):

[image: _images/import_protocol.svg]

	The utility sends “REBUILD” with data [part, package]:

	part is the part of the website to rebuild. It must be one of “HOME”,
“SEARCH”, “PROJECT” or “BOTH”.

	package is the name of the package to rebuild indexes and/or project
pages for or None if pages for all packages should be rebuilt. This
parameter is omitted if part is “HOME” or “SEARCH”.

	If the rebuild request fails (e.g. if the package does not exist), the
master will send “ERROR” with data message (a string describing the
error that occurred).

	If the rebuild request is successful, the master replies with “DONE”.

11.5.5. File Juggler

The queue that talks to File Juggler is a ZeroMQ DEALER socket. This is
because the protocol is semi-asynchronous (for performance reasons). For the
sake of illustration, a synchronous version of the protocol is illustrated
below:

[image: _images/file_protocol.svg]

	The build slave initially sends “HELLO” with data slave_id where
slave_id is the integer identifier of the slave. The master knows what
file it requested from this slave (with “SEND” to the Slave Driver), and
knows the file hash it is expecting from the “BUILT” message.

	The master replies with “FETCH” with data [offset, length] where
offset is a byte offset into the file, and length is the number of bytes
to send.

	The build slave replies with “CHUNK” with data where data is a
byte-string containing the requested bytes from the file.

	The master now either replies with another “FETCH” message or, when it has
all chunks successfully received, replies with “DONE” indicating the
build slave can now close the file (though it can’t delete it yet; see
the “DONE” message on the Slave Driver side for that).

“FETCH” messages may be repeated if the master drops packets (due to an
overloaded queue). Furthermore, because the protocol is semi-asynchronous
multiple “FETCH” messages will be sent before the master waits for any
returning “CHUNK” messages.

11.6. Security

Care must be taken when running the build slave. Building all packages in PyPI
effectively invites the denizens of the Internet to run arbitrary code on your
machine. For this reason, the following steps are recommended:

	Never run the build slave on the master; ensure they are entirely separate
machines.

	Run the build slave as an unprivileged user which has access to nothing it
doesn’t absolutely require (it shouldn’t have any access to the master’s
file-system, the master’s database, etc.)

	Install the build slave’s code in a location the build slave’s unprivileged
user does not have write access (i.e. not in a virtualenv under the user’s
home dir).

	Consider whether to make the unprivileged user’s home-directory read-only.

We have experimented with read-only home directories, but a significant portion
of (usually scientifically oriented) packages attempt to be “friendly” and
either write data to the user’s home directory or modify the user’s profile
(~/.bashrc and so forth).

The quandry is whether it is better to fail with such packages (a read-only
home-directory will most likely crash such setup scripts, failing the build),
or partially support them (leaving the home-directory writeable even though the
modifications on the build-slave won’t be recorded in the resulting wheel and
thus won’t be replicated on user’s machines). There is probably no universally
good answer.

Currently, while the build slave cleans up the temporary directory used by pip
during wheel building, it doesn’t attempt to clean its own home directory
(which setup scripts are free to write to). This is something that ought to be
addressed in future as it’s a potentially exploitable hole.

12. Module Reference

This chapter contains all the documentation auto-generated from the source
code. It is probably not terribly useful for reading through, but may be useful
as a searchable reference.

	piwheels.master

	piwheels.master.db

	piwheels.master.cloud_gazer

	piwheels.master.the_oracle

	piwheels.master.seraph

	piwheels.master.the_architect

	piwheels.master.slave_driver

	piwheels.master.mr_chase

	piwheels.master.file_juggler

	piwheels.master.big_brother

	piwheels.master.the_secretary

	piwheels.master.the_scribe

	piwheels.slave

	piwheels.slave.builder

	piwheels.initdb

	piwheels.importer

	piwheels.remove

	piwheels.transport

	piwheels.tasks

	piwheels.states

	piwheels.ranges

12.1. piwheels.master

12.2. piwheels.master.db

This module defines the low level database API, Database. This is a
simple core SQLAlchemy affair which runs trivial queries against the PostgreSQL
database. All the serious logic is defined within views in the database
itself.

	
class piwheels.master.db.Database(dsn)

	PiWheels database connection class

	
add_new_package(package, skip='', description='')

	Insert a new package record into the database. Returns True if the row
was inserted successfully, or False if a key violation occurred.

	
add_new_package_version(package, version, released=None, skip='')

	Insert a new package version record into the database. Returns True if
the row was inserted successfully, or False if a key violation
occurred.

	
delete_build(package, version)

	Remove all builds for the specified package and version, along with
all files records.

	
delete_package(package)

	Remove the specified package, along with all builds and files.

	
delete_version(package, version)

	Remove the specified version of the specified package, along with all
builds and files.

	
get_all_package_versions()

	Returns the set of all known (package, version) tuples.

	
get_all_packages()

	Returns the set of all known package names.

	
get_build_abis()

	Return the set of ABIs that the master should attempt to build.

	
get_build_queue(limit=1000)

	Returns a mapping of ABI tags to an ordered list of up to limit
package version tuples which currently need building for that ABI.

	
get_file_apt_dependencies(filename)

	Returns a set of the apt dependencies for the specified filename.

	
get_package_description(package)

	Retrieve the description for package in the packages table.

	
get_package_files(package)

	Returns a mapping of filenames to file hashes; this is all the data
required to build the simple index.html for the specified package.

	
get_project_files(package)

	Returns all details required to build the files table in the project
page of the specified package.

	
get_project_versions(package)

	Returns all details required to build the versions table in the
project page of the specified package.

	
get_pypi_serial()

	Return the serial number of the last PyPI event.

	
get_search_index()

	Return a mapping of all packages to their download count for the last
month. This is used to construct the searchable package index.

	
get_statistics()

	Return various build related statistics from the database.

	
get_version_files(package, version)

	Returns the names of all files for version of package.

	
get_version_skip(package, version)

	Returns the reason for skipping version of package.

	
get_versions_deleted(package)

	Return any versions of package which have been marked for deletion.

	
load_rewrites_pending()

	Loads the rewrites-pending queue (the internal state of
TheSecretary) from the database.

	
log_build(build)

	Log a build attempt in the database, including build output and wheel
info if successful.

	
log_download(download)

	Log a download in the database, including data derived from JSON in
pip’s user-agent.

	
log_json(json)

	Log a project’s JSON page hit in the database.

	
log_page(page)

	Log a web page hit in the database.

	
log_project(project)

	Log a project page hit in the database.

	
log_search(search)

	Log a search in the database, including data derived from JSON in
pip’s user-agent.

	
package_marked_deleted(package)

	Check whether package has been marked for deletion.

	
save_rewrites_pending(queue)

	Save the rewrites-pending queue (the internal state of
TheSecretary) in the database. The queue parameter is
expected to be a list of RewritePendingRow tuples.

	
set_package_description(package, description)

	Update the description for package in the packages table.

	
set_pypi_serial(serial)

	Update the serial number of the last PyPI event.

	
skip_package(package, reason)

	Mark a package with a reason to prevent future builds of all versions
(and all future versions).

	
skip_package_version(package, version, reason)

	Mark a version of a package with a reason to prevent future build
attempts.

	
test_package(package)

	Check whether package already exists in the database. Returns a
boolean.

	
test_package_version(package, version)

	Check whether version of package already exists in the database.
Returns a boolean.

	
unyank_version(package, version)

	Mark the specified version of the specified package version as “unyanked”.

	
yank_version(package, version)

	Mark the specified version of the specified package version as “yanked”.

12.3. piwheels.master.cloud_gazer

12.4. piwheels.master.the_oracle

Defines TheOracle task and the DbClient RPC class for talking
to it.

	
class piwheels.master.the_oracle.TheOracle(config)

	This task provides an RPC-like interface to the database; it handles
requests such as registering a new package, version, or build, and
answering queries about the hashes of files. The primary clients of this
class are SlaveDriver,
TheScribe, and CloudGazer.

Note that because database requests are notoriously variable in length the
client RPC class (DbClient) doesn’t directly talk to
TheOracle. Rather, multiple instances of TheOracle are
spawned and Seraph sits in front of these acting as a
simple load-sharing router for the RPC clients.

	
close()

	Close all registered queues. This should be overridden to close any
additional queues the task holds which aren’t registered.

	
do_allpkgs()

	Handler for “ALLPKGS” message, sent by DbClient to request the
set of all packages define known to the database.

	
do_allvers()

	Handler for “ALLVERS” message, sent by DbClient to request the
set of all (package, version) tuples known to the database.

	
do_delbuild(package, version)

	Handler for “DELBUILD” message, sent by DbClient to remove all
builds (and files and downloads by cascade) for version of package.

	
do_delpkg(package)

	Handler for “DELPKG” message, sent by DbClient to delete a
package.

	
do_delver(package, version)

	Handler for “DELVER” message, sent by DbClient to delete
a specific version of a package.

	
do_filedeps(filename)

	Handler for “FILEDEPS” message, sent by DbClient to request
apt dependencies for filename, returned as a set of dependencies
excluding those which are preinstalled in the distro version with the
corresponding ABI tag.

	
do_getabis()

	Handler for “GETABIS” message, sent by DbClient to request the
list of all ABIs to build for.

	
do_getdesc(package)

	Handler for “GETDESC” message, sent by DbClient to retrieve
a package’s project description.

	
do_getpypi()

	Handler for “GETPYPI” message, sent by DbClient to request the
record of the last serial number from the PyPI changelog.

	
do_getsearch()

	Handler for “GETSEARCH” message, sent by DbClient to request
the recent download statistics, returned as a mapping of package to
(downloads_recent, downloads_all) tuples.

	
do_getskip(package, version)

	Handler for “GETSKIP” message, send by DbClient to request
the reason for skipping builds of version of package.

	
do_getstats()

	Handler for “GETSTATS” message, sent by DbClient to request
the latest database statistics, returned as a list of (field, value)
tuples.

	
do_loadrwp()

	Handler for “LOADRWP” message, sent by DbClient to request
the content of the rewrites_pending table.

	
do_logbuild(build)

	Handler for “LOGBUILD” message, sent by DbClient to register a
new build result.

	
do_logdownload(download)

	Handler for “LOGDOWNLOAD” message, sent by DbClient to register
a new download.

	
do_logjson(json)

	Handler for “LOGJSON” message, sent by DbClient to register a
new project JSON download.

	
do_logpage(page)

	Handler for “LOGPAGE” message, sent by DbClient to register a
new web page hit.

	
do_logproject(project)

	Handler for “LOGPROJECT” message, sent by DbClient to register
a new project page hit.

	
do_logsearch(search)

	Handler for “LOGSEARCH” message, sent by DbClient to
register a new search.

	
do_newpkg(package, skip, description)

	Handler for “NEWPKG” message, sent by DbClient to register a
new package.

	
do_newver(package, version, released, skip)

	Handler for “NEWVER” message, sent by DbClient to register a
new (package, version) tuple.

	
do_pkgdeleted(package)

	Handler for “PKGDELETED” message, sent by DbClient to request
whether or not the specified package has been marked for deletion.

	
do_pkgexists(package)

	Handler for “PKGEXISTS” message, sent by DbClient to request
whether or not the specified package exists.

	
do_pkgfiles(package)

	Handler for “PKGFILES” message, sent by DbClient to request
details of all wheels assocated with package.

	
do_projfiles(package)

	Handler for “PROJFILES” message, sent by DbClient to request
file details of all versions of package.

	
do_projvers(package)

	Handler for “PROJVERS” message, sent by DbClient to request
build and skip details of all versions of package.

	
do_saverwp(queue)

	Handler for “SAVERWP” message, sent by DbClient to request
that queue is saved to the rewrites_pending table.

	
do_setdesc(package, description)

	Handler for “SETDESC” message, sent by DbClient to update a
package’s project description.

	
do_setpypi(serial)

	Handler for “SETPYPI” message, sent by DbClient to update the
last seen serial number from the PyPI changelog.

	
do_skippkg(package, reason)

	Handler for “SKIPPKG” message, sent by DbClient to skip
building all versions of a package.

	
do_skipver(package, version, reason)

	Handler for “SKIPVER” message, sent by DbClient to skip
building a specific version of a package.

	
do_unyankver(package, version)

	Handler for “UNYANKVER” message, sent by DbClient to mark
a specific version of a package as not “yanked”.

	
do_verexists(package, version)

	Handler for “VEREXISTS” message, sent by DbClient to request
whether or not the specified version of package exists.

	
do_verfiles(package, version)

	Handler for “VERFILES” message, sent by DbClient to request
the filenames of all wheels associated with version of package.

	
do_versdeleted(package)

	Handler for “VERSDELETED” message, sent by DbClient to request
any versions for package which have been marked for deletion.

	
do_yankver(package, version)

	Handler for “YANKVER” message, sent by DbClient to mark
a specific version of a package as “yanked”.

	
handle_db_request(queue)

	Handle incoming requests from DbClient instances.

	
class piwheels.master.the_oracle.DbClient(config, logger=None)

	RPC client class for talking to TheOracle.

	
add_new_package(package, skip='', description='')

	See db.Database.add_new_package().

	
add_new_package_version(package, version, released=None, skip='')

	See db.Database.add_new_package_version().

	
delete_build(package, version)

	See db.Database.delete_build().

	
delete_package(package)

	See db.Database.delete_package().

	
delete_version(package, version)

	See db.Database.delete_version().

	
get_all_package_versions()

	See db.Database.get_all_package_versions().

	
get_all_packages()

	See db.Database.get_all_packages().

	
get_build_abis()

	See db.Database.get_build_abis().

	
get_file_apt_dependencies(filename)

	See db.Database.get_file_apt_dependencies().

	
get_package_description(package)

	See db.Database.get_project_description().

	
get_package_files(package)

	See db.Database.get_package_files().

	
get_project_files(package)

	See db.Database.get_project_files().

	
get_project_versions(package)

	See db.Database.get_project_versions().

	
get_pypi_serial()

	See db.Database.get_pypi_serial().

	
get_search_index()

	See db.Database.get_search_index().

	
get_statistics()

	See db.Database.get_statistics().

	
get_version_files(package, version)

	See db.Database.get_version_files().

	
get_version_skip(package, version)

	See db.Database.get_version_skip().

	
get_versions_deleted(package)

	See db.Database.get_versions_deleted().

	
load_rewrites_pending()

	See db.Database.load_rewrites_pending().

	
log_build(build)

	See db.Database.log_build().

	
log_download(download)

	See db.Database.log_download().

	
log_json(json)

	See db.Database.log_json().

	
log_page(page)

	See db.Database.log_page().

	
log_project(project)

	See db.Database.log_project().

	
log_search(search)

	See db.Database.log_search().

	
package_marked_deleted(package)

	See db.Database.package_marked_deleted().

	
save_rewrites_pending(queue)

	See db.Database.save_rewrites_pending().

	
set_package_description(package, description)

	See db.Database.update_project_description().

	
set_pypi_serial(serial)

	See db.Database.set_pypi_serial().

	
skip_package(package, reason)

	See db.Database.skip_package().

	
skip_package_version(package, version, reason)

	See db.Database.skip_package_version().

	
test_package(package)

	See db.Database.test_package().

	
test_package_version(package, version)

	See db.Database.test_package_version().

	
unyank_version(package, version)

	See db.Database.unyank_version().

	
yank_version(package, version)

	See db.Database.yank_version().

12.5. piwheels.master.seraph

Defines the Seraph task; see class for more details.

	
class piwheels.master.seraph.Seraph(config)

	This task is a simple load-sharing router for
TheOracle tasks.

	
handle_back(queue)

	Receive a response from an instance of TheOracle
on the back queue. Strip off the worker’s address frame and add it back
to the available queue then send the response back to the client that
made the original request.

	
handle_front(queue)

	If any workers are currently available, receive
DbClient requests from the front queue and send
it on to the worker including the client’s address frame.

12.6. piwheels.master.the_architect

Defines TheArchitect task; see class for more details.

	
class piwheels.master.the_architect.TheArchitect(config)

	This task queries the backend database to determine which versions of
packages have yet to be built (and aren’t marked to be skipped). It pushes
the results to SlaveDriver to sort out.

	
close()

	Close all registered queues. This should be overridden to close any
additional queues the task holds which aren’t registered.

	
quit()

	Overridden to cancel any existing long-running query.

	
update_build_queue()

	The architect simply runs the build queue query repeatedly, with a
break of a minute between each execution.

All entries found within this limit are sorted into per-ABI queues and
pushed to SlaveDriver which queues and
dispatches jobs to build ABI-matched slaves as they become available.

12.7. piwheels.master.slave_driver

Defines the SlaveDriver task; see class for more details.

	
class piwheels.master.slave_driver.SlaveDriver(config)

	This task handles interaction with the build slaves using the slave
protocol. Interaction is driven by the slaves (i.e. the master doesn’t
push jobs, rather the slaves request a job and the master replies with
the next (package, version) tuple from the internal “builds” queue).

The task also incidentally interacts with several other queues: the
internal “status” queue is sent details of every reply sent to a build
slave (the main_loop() method passes this
information on to any listening monitors). Also, the internal “indexes”
queue is informed of any packages that need web page indexes re-building
(as a result of a successful build).

	
close()

	Close all registered queues. This should be overridden to close any
additional queues the task holds which aren’t registered.

	
do_built(slave)

	Handler for the build slave’s “BUILT” message, which is sent after an
attempted package build succeeds or fails. The handler logs the result
in the database and, if files have been generated by the build, informs
the FileJuggler task to expect a file transfer
before sending “SEND” back to the build slave with the required
filename.

If no files were generated (e.g. in the case of a failed build, or a
degenerate success), “DONE” is returned indicating that the build slave
is free to discard all resources generated during the build and return
to its idle state.

	
do_busy(slave)

	Handler for the build slave’s “BUSY” message, which is sent
periodically during package builds. If the slave fails to respond with
a BUSY ping for a duration longer than SlaveState.busy_timeout
then the master will assume the slave has died and remove it from the
internal state mapping (if the slave happens to resurrect itself later
the master will simply treat it as a new build slave).

In response to “BUSY” the master can respond “CONT” to indicate the
build should continue processing, or “DONE” to indicate that the build
slave should immediately terminate and discard the build and return to
“IDLE” state.

	
do_bye(slave)

	Handler for the build slave’s final “BYE” message upon shutdown. This
removes the associated state from the internal slaves dict.

	Parameters

	slave (SlaveState) – The object representing the current status of the build slave.

	
do_hello(slave)

	Handler for the build slave’s initial “HELLO” message. This associates
the specified slave state with the slave’s address and returns
“HELLO” with the master’s id for the slave (the id communicated back
simply for consistency of logging; administrators can correlate master
log messages with slave log messages when both have the same id
number; we can’t use IP address for this as multiple slaves can run on
one machine).

	Parameters

	slave (SlaveState) – The object representing the current status of the build slave.

	
do_idle(slave)

	Handler for the build slave’s “IDLE” message (which is effectively the
slave requesting work). If the master wants to terminate the slave,
it sends back “BYE”. If the build queue (for the slave’s ABI) is empty
or the task is currently paused, “SLEEP” is returned indicating the
slave should wait a while and then try again.

If a job can be retrieved from the (ABI specific) build queue, then
a “BUILD” message is sent back with the required package and version.

	Parameters

	slave (SlaveState) – The object representing the current status of the build slave.

	
do_sent(slave)

	Handler for the build slave’s “SENT” message indicating that it’s
finished sending the requested file to FileJuggler. The
FsClient RPC mechanism is used to ask FileJuggler to
verify the transfer against the stored hash and, if this is successful,
a message is sent to TheScribe to regenerate the package’s
index.

If further files remain to be transferred, another “SEND” message is
returned to the build slave. Otherwise, “DONE” is sent to free all
build resources.

If a transfer fails to verify, another “SEND” message with the same
filename is returned to the build slave.

	
handle_build(queue)

	Refresh the ABI-specific queues of package versions waiting to be
built. The queues are limited to 1000 packages per ABI, and are kept as
lists ordered by release date. When a message arrives from
TheArchitect it refreshes (replaces) all current queues. There
is, however, still a duplication possibility as TheArchitect
doesn’t know what packages are actively being built; this method
handles filtering out such packages.

Even if the active builds fail (because build slaves crash, or the
network dies) this doesn’t matter as a future re-run of the build
queue query will return these packages again, and if no build slaves
are actively working on them at that time they will then be retried.

	
handle_control(queue)

	Handle incoming requests to the internal control queue.

This class understands a couple of extra control messages unique to it,
specifically “KILL” to tell a build slave to terminate, “SKIP” to tell
a build slave to terminate its current build immmediately, and “HELLO”
to cause all “HELLO” messages from build slaves to be replayed (for the
benefit of a newly attached monitor process).

	
handle_delete(queue)

	Handle package or version deletion requests.

When the PyPI upstream deletes a version or package, the
CloudGazer task requests that other tasks perform the deletion
on its behalf. In the case of this task, this involves cancelling any
pending builds of that package (version), and ignoring any builds
involving that package (version) in the next queue update from
TheArchitect.

	
handle_slave(queue)

	Handle requests from build slaves.

See the piw-slave chapter for an overview of the protocol for
messages between build slaves and SlaveDriver. This method
retrieves the message from the build slave, finds the associated
SlaveState and updates it with the message, then
calls the appropriate message handler. The handler will be expected to
return a reply (in the usual form of a list of strings) or None if
no reply should be sent (e.g. for a final “BYE” message).

	
kill_slave(slave_id)

	Additional task control method to trigger a “KILL” message to the
internal control queue. See handle_control() for more
information.

	
list_slaves()

	Additional task control method to trigger a “HELLO” message to the
internal control queue. See quit() for more
information.

	
remove_expired()

	Remove slaves which have exceeded their timeout.

	
skip_slave(slave_id)

	Additional task control method to trigger a “SKIP” message to the
internal control queue. See handle_control() for more
information.

	
sleep_slave(slave_id)

	Additional task control method to trigger a “SLEEP” message to the
internal control queue. See handle_control() for more
information.

	
wake_slave(slave_id)

	Additional task control method to trigger a “WAKE” message to the
internal control queue. See handle_control() for more
information.

12.8. piwheels.master.mr_chase

12.9. piwheels.master.file_juggler

Defines the FileJuggler task and the FsClient RPC class
for interacting with it.

	
exception piwheels.master.file_juggler.TransferError

	Base class for errors raised during a file transfer.

	
exception piwheels.master.file_juggler.TransferIgnoreChunk

	Exception raised when a build slave sends CHUNK instead of HELLO as the
first message (see FileJuggler.new_transfer()).

	
exception piwheels.master.file_juggler.TransferDone

	Exception raised when a transfer is complete. It may seem a little odd to
use an exception for this, but it is “exceptional” behaviour to terminate
the file transfer.

	
class piwheels.master.file_juggler.FileJuggler(config)

	This task handles file transfers from the build slaves. The specifics of
the file transfer protocol are best understood from the implementation of
the FileState class.

However, to detail how a file transfer begins: when a build slave has
successfully completed a build it informs the master via the
SlaveDriver task. That task replies with a “SEND”
instruction to the slave (including a filename). The slave then initiates
the transfer with a “HELLO” message to this task. Once transfers are
complete the slave sends a “SENT” message to the
SlaveDriver task which verifies the transfer and
either retries it (when verification fails) or sends back “DONE” indicating
the slave can wipe the source file.

	
current_transfer(transfer, msg, *args)

	Called for messages associated with an existing file transfer.

Usually this is “CHUNK” indicating another chunk of data. Rarely, it
can be “HELLO” if the master has fallen silent and dropped tons of
packets.

	Parameters

	
	transfer (TransferState) – The object representing the state of the transfer.

	msg (str) – The message sent during the transfer.

	*args – All additional arguments; for “CHUNK” the first must be the file
offset and the second the data to write to that offset.

	
do_expect(slave_id, file_state)

	Message sent by FsClient to inform file juggler that a build
slave is about to start a file transfer. The message includes the full
FileState. The state is stored in the pending
map.

	Parameters

	
	slave_id (int) – The identity of the build slave about to begin the transfer.

	file_state (list) – The details of the file to be transferred including the expected
hash.

	
do_verify(slave_id, package)

	Message sent by FsClient to request that juggler verify a file
transfer against the expected hash and, if it matches, rename the file
into its final location.

	Parameters

	
	slave_id (int) – The identity of the build slave that sent the file.

	package (str) – The name of the package that the file is to be committed to, if
valid.

	
handle_file(queue)

	Handle incoming file-transfer messages from build slaves.

The file transfer protocol is in some ways very simple (see the chart
in the piw-slave chapter for an overview of the message sequence)
and in some ways rather complex (read the ZeroMQ guide chapter on file
transfers for more detail on why multiple messages must be allowed in
flight simultaneously).

The “normal” state for a file transfer is to be requesting and
receiving chunks. Anything else, including redundant re-sends, and
transfer completion is handled as an exceptional case.

	
handle_fs_request(queue)

	Handle incoming messages from FsClient instances.

	
new_transfer(msg, *args)

	Called for messages initiating a new file transfer.

The first message must be HELLO along with the id of the slave starting
the transfer. The metadata for the transfer will be looked up in the
pending list (which is written to by do_expect()).

	Parameters

	
	msg (str) – The message sent to start the transfer (must be “HELLO”)

	*args – All additional arguments (expected to be an integer slave id).

	
once()

	This method is called once before the task loop starts. It the task
needs to do some initialization or setup within the task thread, this
is the place to do it.

	
class piwheels.master.file_juggler.FsClient(config, logger=None)

	RPC client class for talking to FileJuggler.

	
expect(slave_id, file_state)

	See FileJuggler.do_expect().

	
verify(slave_id, package)

	See FileJuggler.do_verify().

12.10. piwheels.master.big_brother

Defines the BigBrother task; see class for more details.

	
class piwheels.master.big_brother.BigBrother(config)

	This task periodically queries the database and output file-system for
various statistics like the number of packages known to the system, the
number built, the number of packages built in the last hour, the remaining
file-system space, etc. These statistics are written to the internal
“status” queue which main_loop() uses to pass
statistics to any listening monitors.

	
close()

	Close all registered queues. This should be overridden to close any
additional queues the task holds which aren’t registered.

	
handle_control(queue)

	Handle incoming requests to the internal control queue.

This just adds handling for the custom STATS verb to replay the master
stats history.

12.11. piwheels.master.the_secretary

Defines the TheSecretary task; see class for more details.

	
class piwheels.master.the_secretary.TheSecretary(config)

	This task buffers requests for the scribe, for the purpose of consolidating
multiple consecutive (duplicate) requests.

Requests to write the project page for a package (which is a relatively
expensive operation in terms of database accesses) can come in thick and
fast, particularly when a new version is being registered with lots of
files. There’s little point in writing the project page 5 times in as many
seconds, or writing the project page, then the index and project page
immediately afterward. This class is used to buffer requests for up to a
minute, allowing us to eliminate many of the duplicate requests.

	
close()

	Close all registered queues. This should be overridden to close any
additional queues the task holds which aren’t registered.

	
handle_input(queue)

	Handle incoming write requests with buffering and de-dupe.

Some incoming requests (currently “HOME”, “SEARCH”, “DELPKG”, and
“DELVER”) are passed directly through to TheScribe as these
are either sufficiently rare (“HOME”, “SEARCH”) that no benefit is
gained by buffering them or sufficiently urgent (“DELPKG”, “DELVER”)
that they must be acted on immediately.

For other requests (“PROJECT” and “BOTH”), requests can come thick
and fast in the case of multiple file registrations picked up by
CloudGazer. In this case, requests are buffered for a minute
and de-duplicated; e.g. if several requests are made to re-write the
project page for package “foo” within that period, they will be
combined into a single request. After the minute of buffering, the
request is passed down to TheScribe.

	
handle_output()

	Passes buffered requests downstream.

This sub-task runs periodically to pluck things from the internal
buffer that have reached the minute delay, and passes them downstream
to TheScribe. The process stops when we run out of things that
have expired.

	
once()

	This method is called once before the task loop starts. It the task
needs to do some initialization or setup within the task thread, this
is the place to do it.

12.12. piwheels.master.the_scribe

12.13. piwheels.slave

12.14. piwheels.slave.builder

12.15. piwheels.initdb

Contains the functions that make up the piw-initdb script.

	
piwheels.initdb.main(args=None)

	This is the main function for the piw-initdb script. It creates
the piwheels database required by the master or, if it already exists,
upgrades it to the current version of the application.

	
piwheels.initdb.detect_users(conn, test_user)

	Test that the user for conn is a cluster superuser (so we can drop and
create anything we want in the database), and that test_user (which will
be granted limited rights to various objects for the purposes of the
piw-master script) exists and is not a cluster superuser.

	
piwheels.initdb.detect_version(conn)

	Detect the version of the database. This is typically done by reading the
contents of the configuration table, but before that was added we can
guess a couple of versions based on what tables exist (or don’t). Returns
None if the database appears uninitialized, and raises
RuntimeError is the version is so ancient we can’t do anything with
it.

	
piwheels.initdb.get_connection(dsn)

	Return an SQLAlchemy connection to the specified dsn or raise
RuntimeError if the database doesn’t exist (the administrator is
expected to create the database before running this script).

	
piwheels.initdb.get_script(version=None)

	Generate the script to get the database from version (the result of
detect_version()) to the current version of the software. If
version is None, this is simply the contents of the
sql/create_piwheels.sql script. Otherwise, it is a concatenation of
various update scripts.

	
piwheels.initdb.parse_statements(script)

	This is an extremely crude statement splitter for PostgreSQL’s dialect of
SQL. It understands --comments, "quoted identifiers", 'string
literals' and $delim$ extended strings $delim$, but not E'\escaped
strings' or /* C-style comments */. If you start using such things in
the update scripts, you’ll need to extend this function to accommodate
them.

It returns a generator which yields individiual statements from script,
delimited by semi-colon terminators.

12.16. piwheels.importer

12.17. piwheels.remove

Contains the functions that implement the piw-remove script.

	
piwheels.remove.main(args=None)

	This is the main function for the piw-remove script. It uses
MrChase to remove built packages from the system.

	
piwheels.remove.do_remove(config)

	Handles constructing and sending the “REMOVE” message to
master.mr_chase.MrChase.

	Parameters

	config – The configuration obtained from parsing the command line.

12.18. piwheels.transport

This module augments the classes provided by pyzmq (the 0MQ Python bindings)
to use CBOR encoding, and voluptuous for message validation. It also tweaks a
few minor things like using seconds for timeouts.

	
class piwheels.transport.Context

	Wrapper for 0MQ zmq.Context. This extends the socket()
method to include parameters for the socket’s protocol and logger.

	
class piwheels.transport.Socket(socket, protocol=None, logger=None)

	Wrapper for zmq.Socket. This extends 0MQ’s sockets to include a
protocol which will be used to validate messages that are sent and received
(via a voluptuous schema), and a logger which can be used to debug socket
behaviour.

	
bind(address)

	Binds the socket to listen on the specified address.

	
close(linger=None)

	Closes the socket. If linger is specified, it is the number of
seconds to wait for pending messages to be flushed.

	
connect(address)

	Connects the socket to the listening socket at address.

	
drain()

	Receives all pending messages in the queue and discards them. This
is typically useful during shutdown routines or for testing.

	
poll(timeout=None, flags=<MagicMock name='mock.POLLIN' id='139814860413304'>)

	Polls the socket for pending data (by default, when flags is POLLIN).
If no data is available after timeout seconds, returns False.
Otherwise returns True.

If flags is POLLOUT instead, tests whether the socket has available
slots for queueing new messages.

	
recv(flags=0)

	Receives the next message as a bytes string.

	
recv_addr_msg(flags=0)

	Receive a CBOR-encoded message (and associated data) along with the
address it came from (represented as a bytes string).

	
recv_msg(flags=0)

	Receive a CBOR-encoded message, returning a tuple of the unicode
message string and its associated data. This is the primary method used
in piwheels for receving information into a task.

The message, and its associated data, will be validated agains the
protocol associated with the socket on construction.

	
recv_multipart(flags=0)

	Receives a multi-part message, returning its content as a list of
bytes strings.

	
send(buf, flags=0)

	Send buf (a bytes string).

	
send_addr_msg(addr, msg, data=NoData, flags=0)

	Send a CBOR-encoded message (and associated data) to addr, a
bytes string.

	
send_msg(msg, data=NoData, flags=0)

	Send the unicode string msg with its associated data as a
CBOR-encoded message. This is the primary method used in piwheels for
sending information between tasks.

The message, and its associated data, must validate against the
protocol associated with the socket on construction.

	
send_multipart(msg_parts, flags=0)

	Send msg_parts, a list of bytes strings as a multi-part
message which can be received intact with recv_multipart().

	
subscribe(topic)

	Subscribes SUB type sockets to the specified topic (a string prefix).

	
unsubscribe(topic)

	Unsubscribes SUB type sockets from the specified topic (a string
prefix).

	
hwm

	The high-water mark of the socket, i.e. the number of messages that can
be queued before the socket blocks (or drops, depending on the socket
type) messages.

	
class piwheels.transport.Poller

	Wrapper for 0MQ zmq.Poller. This simply tweaks 0MQ’s poller to use
seconds for timeouts, and to return a dict by default from
poll().

	
poll(timeout=None)

	Poll all registered sockets for the events they were registered with,
for timeout seconds. Returns a dictionary mapping sockets to events
or an empty dictinoary if the timeout elapsed with no events
occurring.

	
register(sock, flags=<MagicMock name='mock.POLLIN.__or__()' id='139814860427336'>)

	Register sock with the poller, watching for events as specified by
flags (which defaults to POLLIN and POLLOUT events).

	
unregister(sock)

	Unregister sock from the poller. After this, calls to poll()
will never return references to sock.

12.19. piwheels.tasks

Implements the base classes (Task and its derivative
PauseableTask) which form the basis of all the tasks in the piwheels
master.

	
exception piwheels.tasks.TaskQuit

	Exception raised when the “QUIT” message is received by the internal
control queue.

	
class piwheels.tasks.Task(config, control_protocol=Protocol(recv={'PAUSE': NoData, 'RESUME': NoData, 'QUIT': NoData}, send={}))

	The Task class is a Thread derivative which is
the base for all tasks in the piwheels master. The run() method is
overridden to perform a simple task loop which calls poll() once a
cycle to react to any messages arriving into queues, and to dispatch any
periodically executed methods.

Queues are associated with handlers via the register() method.
Periodic methods are associated with an interval via the every()
method. These should be called during initialization (don’t attempt to
register handlers from within the thread itself).

Generally this shouldn’t be used as a base-class. Use one of the
descendents that implements a pausing mechanism, NonStopTask,
PauseableTask, or PausingTask.

	
close()

	Close all registered queues. This should be overridden to close any
additional queues the task holds which aren’t registered.

	
every(interval, handler)

	Register handler to be called every interval periodically.

	Parameters

	
	interval (timedelta) – The time interval between each run of handler.

	handler – The function or method to call periodically.

	
force(handler)

	Force handler to run next time its interval is polled.

	
handle_control(queue)

	Default handler for the internal control queue. In this base class it
simply handles the “QUIT” message by raising TaskQuit (which the
run() method will catch and use as a signal to end).

Messages other than QUIT, PAUSE and RESUME raise TaskControl
which can be caught in descendents to implement custom control
messages.

	
once()

	This method is called once before the task loop starts. It the task
needs to do some initialization or setup within the task thread, this
is the place to do it.

	
pause()

	Requests that the task pause itself. This is an idempotent method; it’s
always safe to call repeatedly and even if the task isn’t pauseable
it’ll simply be ignored.

	
poll(timeout=1)

	This method is called once per loop of the task’s run() method.
It runs all periodic handlers, then polls all registered queues and
calls their associated handlers if the poll is successful.

	
quit()

	Requests that the task terminate at its earliest convenience. To wait
until the task has actually closed, call join() afterwards.

	
register(queue, handler, flags=<MagicMock name='mock.POLLIN' id='139814860413304'>)

	Register queue to be polled on each cycle of the task. Any messages
with the relevant flags (defaults to POLLIN) will trigger the
specified handler method which is expected to take a single argument
which will be queue.

	Parameters

	
	queue (transport.Socket) – The queue to poll.

	handler – The function or method to call when a message with matching flags
arrives in queue.

	flags (int) – The flags to match in the queue poller (defaults to POLLIN).

	
resume()

	Requests that the task resume itself. This is an idempotent method;
it’s safe to call repeatedly and even if the task isn’t pauseable it’ll
simply be ignored.

	
run()

	This method is the main task loop. Override this to perform one-off
startup processing within the task’s background thread, and to perform
any finalization required.

	
socket(sock_type, protocol=None)

	Construct a socket and link it to the logger for this task. This is
primarily useful for debugging purposes, but also ensures that the
task will implicitly close and clean up the socket when it closes.

	
class piwheels.tasks.PauseableTask(config, control_protocol=Protocol(recv={'PAUSE': NoData, 'RESUME': NoData, 'QUIT': NoData}, send={}))

	Derivative of Task that implements a rudimentary pausing
mechanism. When the “PAUSE” message is received on the internal control
queue, the task will enter a loop which simply polls the control queue
waiting for “RESUME” or “QUIT”. No other work will be done
(Task.loop() and Task.poll() will not be called) until the task
is resumed (or terminated).

If you need a more complex pausing implementation which can still do some
work while paused (to drain incoming queues for instance), use
PausingTask instead.

	
handle_control(queue)

	Default handler for the internal control queue. In this base class it
simply handles the “QUIT” message by raising TaskQuit (which the
run() method will catch and use as a signal to end).

Messages other than QUIT, PAUSE and RESUME raise TaskControl
which can be caught in descendents to implement custom control
messages.

12.20. piwheels.states

This module defines several classes which permit interested tasks to track the
state of build slaves (SlaveState), file transfers
(TransferState), build attempts (BuildState), build
artifacts (FileState) and various loggers.

	
class piwheels.states.FileState(filename, filesize, filehash, package_tag, package_version_tag, py_version_tag, abi_tag, platform_tag, dependencies, transferred=False)

	Represents the state of an individual build artifact (a package file, or
wheel) including its filename, filesize, the SHA256
filehash, and various tags extracted from the build. Also tracks
whether or not the file has been transferred.

	Parameters

	
	filename (str) – The original filename of the build artifact.

	filesize (int) – The size of the file in bytes.

	filehash (str) – The SHA256 hash of the file contents.

	package_tag (str) – The package tag extracted from the filename (first “-” separated
component).

	package_version_tag (str) – The package version tag extracted from the filename (second “-”
separated component).

	py_version_tag (str) – The python version tag extracted from the filename (third from last “-”
separated component).

	abi_tag (str) – The python ABI tag extracted from the filename (second from last “-”
separated component).

	platform_tag (str) – The platform tag extracted from the filename (last “-” separated
component).

	dependencies (set) – The set of dependencies that are required to use this particular
wheel.

	transferred (bool) – True if the file has been transferred from the build slave that
generated it to the file server.

	
as_message()

	Convert the FileState object into a simpler list for
serialization and transport.

	
classmethod from_message(value)

	Convert the output from as_message() back into a
BuildState.

	
verified()

	Called to set transferred to True after a file transfer has
been successfully verified.

	
class piwheels.states.BuildState(slave_id, package, version, abi_tag, status, duration, output, files, build_id=None)

	Represents the state of a package build including the package,
version, status, build duration, and all the lines
of output. The files attribute is a mapping containing
details of each successfully built package file.

	Parameters

	
	slave_id (int) – The master’s identifier for the build slave.

	package (str) – The name of the package to build.

	version (str) – The version number of the package to build.

	abi_tag (str) – The ABI for which the build was attempted (must not be 'none').

	status (bool) – True if the build succeeded, False if it failed.

	duration (timedelta) – The amount of time (in seconds) it took to complete the build.

	output (str) – The log output of the build.

	files (dict) – A mapping of filenames to FileState objects for each artifact
produced by the build.

	build_id (int) – The integer identifier generated for the build by the database
(None until the build has been inserted into the database).

	
as_message()

	Convert the BuildState, and its nested FileState
objects into simpler lists for serialization and transport.

	
classmethod from_message(value)

	Convert the output from as_message() back into a
BuildState.

	
logged(build_id)

	Called to fill in the build’s ID in the backend database.

	
files

	A mapping of filename to FileState instances.

	
next_file

	Returns the filename of the next file that needs transferring or
None if all files have been transferred.

	
transfers_done

	Returns True if all files have been transferred.

	
class piwheels.states.SlaveState(address, build_timeout, busy_timeout, native_py_version, native_abi, native_platform, label, os_name, os_version, board_revision, board_serial)

	Tracks the state of a build slave. The master updates this state with each
request and reply sent to and received from the slave, and this class in
turn manages the associated BuildState (accessible from
build) and TransferState (accessible from
transfer). The class also tracks the time a request was last seen
from the build slave, and includes a kill() method.

	Parameters

	
	address (bytes) – The slave’s ephemeral 0MQ address.

Note

This is not the slave’s IP address; it’s a unique identifier
generated on connection to the master’s ROUTER socket. It will be
different each time the slave re-connects (due to timeout, reboot,
etc).

	timeout (int) – The number of seconds after which any build will be considered to have
timed out (and the slave will be assumed crashed).

	native_py_version (str) – The slave’s native Python version.

	native_abi (str) – The slave’s native Python ABI.

	native_platform (str) – The slave’s native platform.

	label (str) – A label representing the slave.

	
class piwheels.states.TransferState(slave_id, file_state)

	Tracks the state of a file transfer. All file transfers are held in
temporary locations until verify() indicates the transfer was
successful, at which point they are atomically renamed into their final
location.

The state is intimately tied to the file transfer protocol and includes
methods to write a recevied chunk(), and to determine the next chunk
to fetch(), as well as a property to determine when the transfer is
done.

	Parameters

	
	slave_id (str) – The ID number of the slave which built the file.

	file_state (FileState) – The details of the file to be transferred (filename, size, hash, etc.)

	
class piwheels.states.DownloadState

	Represents the state of the log entry for a download of a package wheel
file, including its filename, the user’s host IP, access
timestamp and information about the operating system and installer.

	Parameters

	
	filename (str) – The filename of the downloaded wheel file.

	host – The hostname or IP address of the user.

	timestamp (datetime.datetime) – The timestamp at which the file was downloaded.

	or None arch (str) – The architecture of the user’s computer system (usually armv6 or
armv7).

	distro_name (str or None) – The user’s operating system distribution name (e.g. Raspbian).

	distro_version (str or None) – The version of the user’s operating system distribution.

	os_name (str or None) – The name of the user’s operating system (e.g. Linux).

	os_version (str or None) – The version of the user’s operating system (e.g. Linux kernel version).

	py_name (str or None) – The Python implementation used (e.g. CPython).

	py_version (str or None) – The Python version used (e.g. 3.7.3).

	installer_name (str or None) – The name of the tool used to install the file (e.g. pip).

	installer_version (str or None) – The version of the tool (e.g. pip) used to install the file.

	setuptools_version (str or None) – The version of setuptools used.

	
class piwheels.states.SearchState

	Represents the state of the log entry for an instance of a package search,
including the package name, user’s host IP, access
timestamp and information about the operating system and installer.

	Parameters

	
	package (str) – The name of the package searched for.

	host (str) – The hostname or IP address of the user.

	timestamp (datetime.datetime) – The timestamp at which the search occurred.

	arch (str or None) – The architecture of the user’s computer system (usually armv6 or armv7).

	distro_name (str or None) – The user’s operating system distribution name (e.g. Raspbian).

	distro_version (str or None) – The version of the user’s operating system distribution.

	os_name (str or None) – The name of the user’s operating system (e.g. Linux).

	os_version (str or None) – The version of the user’s operating system (e.g. Linux kernel version).

	py_name (str or None) – The Python implementation used (e.g. CPython).

	py_version (str or None) – The Python version used (e.g. 3.7.3).

	installer_name (str or None) – The name of the tool used (e.g. pip).

	installer_version (str or None) – The version of the tool (e.g. pip) used.

	setuptools_version (str or None) – The version of setuptools used.

	
class piwheels.states.ProjectState

	Represents the state of the log entry for an instance of project page hit,
including the page name, the user’s host IP, access
timestamp and the user’s user_agent.

	Parameters

	
	package (str) – The name of the package searched for.

	host (str) – The hostname or IP address of the user.

	timestamp (datetime.datetime) – The timestamp at which the page was accessed.

	user_agent (str) – The user agent of the page request.

	
class piwheels.states.JSONState

	Represents the state of the log entry for an instance of project JSON
download, including the page name, the user’s host IP,
access timestamp and the user’s user_agent.

	Parameters

	
	package (str) – The name of the package whose JSON file was accessed.

	host (str) – The hostname or IP address of the user.

	timestamp (datetime.datetime) – The timestamp at which the page was accessed.

	user_agent (str) – The user agent of the request.

	
class piwheels.states.PageState

	Represents the state of the log entry for an instance of web page hit,
including the page name, the user’s host IP, access
timestamp and the user’s user_agent.

	Parameters

	
	page (str) – The name of the page accessed.

	host (str) – The IP address of the user.

	timestamp (datetime.datetime) – The timestamp at which the page was accessed.

	user_agent (str) – The user agent of the page request.

	
class piwheels.states.SlaveStats

	

	
class piwheels.states.MasterStats

	

	
piwheels.states.mkdir_override_symlink(pkg_dir)

	Make pkg_dir, replacing any existing symlink in its place. See the
notes in TheScribe.write_package_index() for more information.

12.21. piwheels.ranges

A set of utility routines for efficiently tracking byte ranges within a stream.
These are used to track which chunks of a file have been received during file
transfers from build slaves.

See FileJuggler for the usage of these functions.

	
piwheels.ranges.consolidate(ranges)

	Given a list of ranges in ascending order, this generator function
returns the list with any overlapping ranges consolidated into individual
ranges. For example:

>>> list(consolidate([range(0, 5), range(4, 10)]))
[range(0, 10)]
>>> list(consolidate([range(0, 5), range(5, 10)]))
[range(0, 10)]
>>> list(consolidate([range(0, 5), range(6, 10)]))
[range(0, 5), range(6, 10)]

	
piwheels.ranges.exclude(ranges, ex)

	Given a list of non-overlapping ranges in ascending order, and a range
ex to exclude, this generator function returns ranges with all values
covered by ex removed from any contained ranges. For example:

>>> list(exclude([range(10)], range(2)))
[range(2, 10)]
>>> list(exclude([range(10)], range(2, 4)))
[range(0, 2), range(4, 10)]

	
piwheels.ranges.intersect(range1, range2)

	Given two ranges range1 and range2 (which must both have a step of
1), returns the range formed by the intersection of the two ranges, or
None if the ranges do not overlap. For example:

>>> intersect(range(10), range(5))
range(0, 5)
>>> intersect(range(10), range(10, 2))
>>> intersect(range(10), range(2, 5))
range(2, 5)

	
piwheels.ranges.split(ranges, i)

	Given a list of non-overlapping ranges in ascending order, this generator
function returns the list with the range containing i split into two
ranges, one ending at i and the other starting at i. If i is not
contained in any of the ranges, then ranges is returned unchanged. For
example:

>>> list(split([range(10)], 5))
[range(0, 5), range(5, 10)]
>>> list(split([range(10)], 0))
[range(0, 10)]
>>> list(split([range(10)], 20))
[range(0, 10)]

13. License

Copyright © 2017 Ben Nuttall and Dave Jones.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The following copyright and license applies to the included cbor2 module only
(all files under piwheels/cbor2):

Copyright © Alex Grönholm

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 piwheels	

 	
 	
 piwheels.initdb	

 	
 	
 piwheels.master.big_brother	

 	
 	
 piwheels.master.db	

 	
 	
 piwheels.master.file_juggler	

 	
 	
 piwheels.master.seraph	

 	
 	
 piwheels.master.slave_driver	

 	
 	
 piwheels.master.the_architect	

 	
 	
 piwheels.master.the_oracle	

 	
 	
 piwheels.master.the_secretary	

 	
 	
 piwheels.ranges	

 	
 	
 piwheels.remove	

 	
 	
 piwheels.states	

 	
 	
 piwheels.tasks	

 	
 	
 piwheels.transport	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

Symbols

 	
 	
 --abi ABI

 	piw-import command line option

 	
 --builds-queue ADDR

 	piw-master command line option

 	
 --control-queue ADDR

 	piw-master command line option

 	piw-monitor command line option

 	piw-sense command line option

 	
 --db-queue ADDR

 	piw-master command line option

 	
 --dev-mode

 	piw-master command line option

 	
 --drop

 	piw-logger command line option

 	
 --duration DURATION

 	piw-import command line option

 	
 --file-queue ADDR

 	piw-master command line option

 	
 --format FORMAT

 	piw-logger command line option

 	
 --fs-queue ADDR

 	piw-master command line option

 	
 --import-queue ADDR

 	piw-import command line option

 	piw-master command line option

 	piw-rebuild command line option

 	piw-remove command line option

 	
 --log-queue ADDR

 	piw-logger command line option

 	piw-master command line option

 	
 --output FILE

 	piw-import command line option

 	
 --package PACKAGE

 	piw-import command line option

 	
 --package-version VERSION

 	piw-import command line option

 	
 --pypi-simple URL

 	piw-master command line option

 	
 --pypi-xmlrpc URL

 	piw-master command line option

 	
 --slave-queue ADDR

 	piw-master command line option

 	
 --stats-queue ADDR

 	piw-master command line option

 	
 --status-queue ADDR

 	piw-master command line option

 	piw-monitor command line option

 	piw-sense command line option

 	
 --version

 	piw-import command line option

 	piw-initdb command line option

 	piw-logger command line option

 	piw-master command line option

 	piw-monitor command line option

 	piw-rebuild command line option

 	piw-remove command line option

 	piw-sense command line option

 	piw-slave command line option

 	
 -c FILE, --configuration FILE

 	piw-import command line option

 	piw-initdb command line option

 	piw-logger command line option

 	piw-master command line option

 	piw-monitor command line option

 	piw-rebuild command line option

 	piw-remove command line option

 	piw-sense command line option

 	piw-slave command line option

 	
 	
 -d DSN, --dsn DSN

 	piw-initdb command line option

 	piw-master command line option

 	
 -d, --delete

 	piw-import command line option

 	
 -h, --help

 	piw-import command line option

 	piw-initdb command line option

 	piw-logger command line option

 	piw-master command line option

 	piw-monitor command line option

 	piw-rebuild command line option

 	piw-remove command line option

 	piw-sense command line option

 	piw-slave command line option

 	
 -l FILE, --log-file FILE

 	piw-import command line option

 	piw-initdb command line option

 	piw-logger command line option

 	piw-master command line option

 	piw-rebuild command line option

 	piw-remove command line option

 	piw-slave command line option

 	
 -m HOST, --master HOST

 	piw-slave command line option

 	
 -o PATH, --output-path PATH

 	piw-master command line option

 	
 -q, --quiet

 	piw-import command line option

 	piw-initdb command line option

 	piw-logger command line option

 	piw-master command line option

 	piw-rebuild command line option

 	piw-remove command line option

 	piw-slave command line option

 	
 -r DEGREES, --rotate DEGREES

 	piw-sense command line option

 	
 -s REASON, --skip REASON

 	piw-remove command line option

 	
 -t DURATION, --timeout DURATION

 	piw-slave command line option

 	
 -u NAME, --user NAME

 	piw-initdb command line option

 	
 -v, --verbose

 	piw-import command line option

 	piw-initdb command line option

 	piw-logger command line option

 	piw-master command line option

 	piw-rebuild command line option

 	piw-remove command line option

 	piw-slave command line option

 	
 -y, --yes

 	piw-import command line option

 	piw-initdb command line option

 	piw-rebuild command line option

 	piw-remove command line option

A

 	
 	add_new_package() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	add_new_package_version() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	
 	as_message() (piwheels.states.BuildState method)

 	(piwheels.states.FileState method)

B

 	
 	BigBrother (class in piwheels.master.big_brother)

 	
 	bind() (piwheels.transport.Socket method)

 	BuildState (class in piwheels.states)

C

 	
 	close() (piwheels.master.big_brother.BigBrother method)

 	(piwheels.master.slave_driver.SlaveDriver method)

 	(piwheels.master.the_architect.TheArchitect method)

 	(piwheels.master.the_oracle.TheOracle method)

 	(piwheels.master.the_secretary.TheSecretary method)

 	(piwheels.tasks.Task method)

 	(piwheels.transport.Socket method)

 	
 	connect() (piwheels.transport.Socket method)

 	consolidate() (in module piwheels.ranges)

 	Context (class in piwheels.transport)

 	current_transfer() (piwheels.master.file_juggler.FileJuggler method)

D

 	
 	Database (class in piwheels.master.db)

 	DbClient (class in piwheels.master.the_oracle)

 	delete_build() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	delete_package() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	delete_version() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	detect_users() (in module piwheels.initdb)

 	detect_version() (in module piwheels.initdb)

 	do_allpkgs() (piwheels.master.the_oracle.TheOracle method)

 	do_allvers() (piwheels.master.the_oracle.TheOracle method)

 	do_built() (piwheels.master.slave_driver.SlaveDriver method)

 	do_busy() (piwheels.master.slave_driver.SlaveDriver method)

 	do_bye() (piwheels.master.slave_driver.SlaveDriver method)

 	do_delbuild() (piwheels.master.the_oracle.TheOracle method)

 	do_delpkg() (piwheels.master.the_oracle.TheOracle method)

 	do_delver() (piwheels.master.the_oracle.TheOracle method)

 	do_expect() (piwheels.master.file_juggler.FileJuggler method)

 	do_filedeps() (piwheels.master.the_oracle.TheOracle method)

 	do_getabis() (piwheels.master.the_oracle.TheOracle method)

 	do_getdesc() (piwheels.master.the_oracle.TheOracle method)

 	do_getpypi() (piwheels.master.the_oracle.TheOracle method)

 	do_getsearch() (piwheels.master.the_oracle.TheOracle method)

 	do_getskip() (piwheels.master.the_oracle.TheOracle method)

 	do_getstats() (piwheels.master.the_oracle.TheOracle method)

 	do_hello() (piwheels.master.slave_driver.SlaveDriver method)

 	do_idle() (piwheels.master.slave_driver.SlaveDriver method)

 	
 	do_loadrwp() (piwheels.master.the_oracle.TheOracle method)

 	do_logbuild() (piwheels.master.the_oracle.TheOracle method)

 	do_logdownload() (piwheels.master.the_oracle.TheOracle method)

 	do_logjson() (piwheels.master.the_oracle.TheOracle method)

 	do_logpage() (piwheels.master.the_oracle.TheOracle method)

 	do_logproject() (piwheels.master.the_oracle.TheOracle method)

 	do_logsearch() (piwheels.master.the_oracle.TheOracle method)

 	do_newpkg() (piwheels.master.the_oracle.TheOracle method)

 	do_newver() (piwheels.master.the_oracle.TheOracle method)

 	do_pkgdeleted() (piwheels.master.the_oracle.TheOracle method)

 	do_pkgexists() (piwheels.master.the_oracle.TheOracle method)

 	do_pkgfiles() (piwheels.master.the_oracle.TheOracle method)

 	do_projfiles() (piwheels.master.the_oracle.TheOracle method)

 	do_projvers() (piwheels.master.the_oracle.TheOracle method)

 	do_remove() (in module piwheels.remove)

 	do_saverwp() (piwheels.master.the_oracle.TheOracle method)

 	do_sent() (piwheels.master.slave_driver.SlaveDriver method)

 	do_setdesc() (piwheels.master.the_oracle.TheOracle method)

 	do_setpypi() (piwheels.master.the_oracle.TheOracle method)

 	do_skippkg() (piwheels.master.the_oracle.TheOracle method)

 	do_skipver() (piwheels.master.the_oracle.TheOracle method)

 	do_unyankver() (piwheels.master.the_oracle.TheOracle method)

 	do_verexists() (piwheels.master.the_oracle.TheOracle method)

 	do_verfiles() (piwheels.master.the_oracle.TheOracle method)

 	do_verify() (piwheels.master.file_juggler.FileJuggler method)

 	do_versdeleted() (piwheels.master.the_oracle.TheOracle method)

 	do_yankver() (piwheels.master.the_oracle.TheOracle method)

 	DownloadState (class in piwheels.states)

 	drain() (piwheels.transport.Socket method)

E

 	
 	every() (piwheels.tasks.Task method)

 	
 	exclude() (in module piwheels.ranges)

 	expect() (piwheels.master.file_juggler.FsClient method)

F

 	
 	FileJuggler (class in piwheels.master.file_juggler)

 	
 files

 	piw-logger command line option

 	files (piwheels.states.BuildState attribute)

 	
 	FileState (class in piwheels.states)

 	force() (piwheels.tasks.Task method)

 	from_message() (piwheels.states.BuildState class method)

 	(piwheels.states.FileState class method)

 	FsClient (class in piwheels.master.file_juggler)

G

 	
 	get_all_package_versions() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_all_packages() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_build_abis() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_build_queue() (piwheels.master.db.Database method)

 	get_connection() (in module piwheels.initdb)

 	get_file_apt_dependencies() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_package_description() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_package_files() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_project_files() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	
 	get_project_versions() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_pypi_serial() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_script() (in module piwheels.initdb)

 	get_search_index() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_statistics() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_version_files() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_version_skip() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	get_versions_deleted() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

H

 	
 	handle_back() (piwheels.master.seraph.Seraph method)

 	handle_build() (piwheels.master.slave_driver.SlaveDriver method)

 	handle_control() (piwheels.master.big_brother.BigBrother method)

 	(piwheels.master.slave_driver.SlaveDriver method)

 	(piwheels.tasks.PauseableTask method)

 	(piwheels.tasks.Task method)

 	handle_db_request() (piwheels.master.the_oracle.TheOracle method)

 	
 	handle_delete() (piwheels.master.slave_driver.SlaveDriver method)

 	handle_file() (piwheels.master.file_juggler.FileJuggler method)

 	handle_front() (piwheels.master.seraph.Seraph method)

 	handle_fs_request() (piwheels.master.file_juggler.FileJuggler method)

 	handle_input() (piwheels.master.the_secretary.TheSecretary method)

 	handle_output() (piwheels.master.the_secretary.TheSecretary method)

 	handle_slave() (piwheels.master.slave_driver.SlaveDriver method)

 	hwm (piwheels.transport.Socket attribute)

I

 	
 	intersect() (in module piwheels.ranges)

J

 	
 	JSONState (class in piwheels.states)

K

 	
 	kill_slave() (piwheels.master.slave_driver.SlaveDriver method)

L

 	
 	list_slaves() (piwheels.master.slave_driver.SlaveDriver method)

 	load_rewrites_pending() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	log_build() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	log_download() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	log_json() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	
 	log_page() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	log_project() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	log_search() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	logged() (piwheels.states.BuildState method)

M

 	
 	main() (in module piwheels.initdb)

 	(in module piwheels.remove)

 	
 	MasterStats (class in piwheels.states)

 	mkdir_override_symlink() (in module piwheels.states)

N

 	
 	new_transfer() (piwheels.master.file_juggler.FileJuggler method)

 	
 	next_file (piwheels.states.BuildState attribute)

O

 	
 	once() (piwheels.master.file_juggler.FileJuggler method)

 	(piwheels.master.the_secretary.TheSecretary method)

 	(piwheels.tasks.Task method)

P

 	
 	
 package

 	piw-remove command line option

 	package_marked_deleted() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	PageState (class in piwheels.states)

 	parse_statements() (in module piwheels.initdb)

 	pause() (piwheels.tasks.Task method)

 	PauseableTask (class in piwheels.tasks)

 	
 piw-import command line option

 	--abi ABI

 	--duration DURATION

 	--import-queue ADDR

 	--output FILE

 	--package PACKAGE

 	--package-version VERSION

 	--version

 	-c FILE, --configuration FILE

 	-d, --delete

 	-h, --help

 	-l FILE, --log-file FILE

 	-q, --quiet

 	-v, --verbose

 	-y, --yes

 	
 piw-initdb command line option

 	--version

 	-c FILE, --configuration FILE

 	-d DSN, --dsn DSN

 	-h, --help

 	-l FILE, --log-file FILE

 	-q, --quiet

 	-u NAME, --user NAME

 	-v, --verbose

 	-y, --yes

 	
 piw-logger command line option

 	--drop

 	--format FORMAT

 	--log-queue ADDR

 	--version

 	-c FILE, --configuration FILE

 	-h, --help

 	-l FILE, --log-file FILE

 	-q, --quiet

 	-v, --verbose

 	files

 	
 piw-master command line option

 	--builds-queue ADDR

 	--control-queue ADDR

 	--db-queue ADDR

 	--dev-mode

 	--file-queue ADDR

 	--fs-queue ADDR

 	--import-queue ADDR

 	--log-queue ADDR

 	--pypi-simple URL

 	--pypi-xmlrpc URL

 	--slave-queue ADDR

 	--stats-queue ADDR

 	--status-queue ADDR

 	--version

 	-c FILE, --configuration FILE

 	-d DSN, --dsn DSN

 	-h, --help

 	-l FILE, --log-file FILE

 	-o PATH, --output-path PATH

 	-q, --quiet

 	-v, --verbose

 	
 	
 piw-monitor command line option

 	--control-queue ADDR

 	--status-queue ADDR

 	--version

 	-c FILE, --configuration FILE

 	-h, --help

 	
 piw-rebuild command line option

 	--import-queue ADDR

 	--version

 	-c FILE, --configuration FILE

 	-h, --help

 	-l FILE, --log-file FILE

 	-q, --quiet

 	-v, --verbose

 	-y, --yes

 	
 piw-remove command line option

 	--import-queue ADDR

 	--version

 	-c FILE, --configuration FILE

 	-h, --help

 	-l FILE, --log-file FILE

 	-q, --quiet

 	-s REASON, --skip REASON

 	-v, --verbose

 	-y, --yes

 	package

 	version

 	
 piw-sense command line option

 	--control-queue ADDR

 	--status-queue ADDR

 	--version

 	-c FILE, --configuration FILE

 	-h, --help

 	-r DEGREES, --rotate DEGREES

 	
 piw-slave command line option

 	--version

 	-c FILE, --configuration FILE

 	-h, --help

 	-l FILE, --log-file FILE

 	-m HOST, --master HOST

 	-q, --quiet

 	-t DURATION, --timeout DURATION

 	-v, --verbose

 	piwheels.initdb (module)

 	piwheels.master.big_brother (module)

 	piwheels.master.db (module)

 	piwheels.master.file_juggler (module)

 	piwheels.master.seraph (module)

 	piwheels.master.slave_driver (module)

 	piwheels.master.the_architect (module)

 	piwheels.master.the_oracle (module)

 	piwheels.master.the_secretary (module)

 	piwheels.ranges (module)

 	piwheels.remove (module)

 	piwheels.states (module)

 	piwheels.tasks (module)

 	piwheels.transport (module)

 	poll() (piwheels.tasks.Task method)

 	(piwheels.transport.Poller method)

 	(piwheels.transport.Socket method)

 	Poller (class in piwheels.transport)

 	ProjectState (class in piwheels.states)

Q

 	
 	quit() (piwheels.master.the_architect.TheArchitect method)

 	(piwheels.tasks.Task method)

R

 	
 	recv() (piwheels.transport.Socket method)

 	recv_addr_msg() (piwheels.transport.Socket method)

 	recv_msg() (piwheels.transport.Socket method)

 	recv_multipart() (piwheels.transport.Socket method)

 	
 	register() (piwheels.tasks.Task method)

 	(piwheels.transport.Poller method)

 	remove_expired() (piwheels.master.slave_driver.SlaveDriver method)

 	resume() (piwheels.tasks.Task method)

 	run() (piwheels.tasks.Task method)

S

 	
 	save_rewrites_pending() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	SearchState (class in piwheels.states)

 	send() (piwheels.transport.Socket method)

 	send_addr_msg() (piwheels.transport.Socket method)

 	send_msg() (piwheels.transport.Socket method)

 	send_multipart() (piwheels.transport.Socket method)

 	Seraph (class in piwheels.master.seraph)

 	set_package_description() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	set_pypi_serial() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	
 	skip_package() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	skip_package_version() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	skip_slave() (piwheels.master.slave_driver.SlaveDriver method)

 	SlaveDriver (class in piwheels.master.slave_driver)

 	SlaveState (class in piwheels.states)

 	SlaveStats (class in piwheels.states)

 	sleep_slave() (piwheels.master.slave_driver.SlaveDriver method)

 	Socket (class in piwheels.transport)

 	socket() (piwheels.tasks.Task method)

 	split() (in module piwheels.ranges)

 	subscribe() (piwheels.transport.Socket method)

T

 	
 	Task (class in piwheels.tasks)

 	TaskQuit

 	test_package() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	test_package_version() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	TheArchitect (class in piwheels.master.the_architect)

 	
 	TheOracle (class in piwheels.master.the_oracle)

 	TheSecretary (class in piwheels.master.the_secretary)

 	TransferDone

 	TransferError

 	TransferIgnoreChunk

 	transfers_done (piwheels.states.BuildState attribute)

 	TransferState (class in piwheels.states)

U

 	
 	unregister() (piwheels.transport.Poller method)

 	unsubscribe() (piwheels.transport.Socket method)

 	
 	unyank_version() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 	update_build_queue() (piwheels.master.the_architect.TheArchitect method)

V

 	
 	verified() (piwheels.states.FileState method)

 	verify() (piwheels.master.file_juggler.FsClient method)

 	
 	
 version

 	piw-remove command line option

W

 	
 	wake_slave() (piwheels.master.slave_driver.SlaveDriver method)

Y

 	
 	yank_version() (piwheels.master.db.Database method)

 	(piwheels.master.the_oracle.DbClient method)

 _static/plus.png

_static/up.png

_static/up-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 piwheels

 		
 Overview

 		
 piw-master

 		
 Synopsis

 		
 Description

 		
 Deployment

 		
 Automatic start

 		
 Upgrades

 		
 piw-slave

 		
 Synopsis

 		
 Description

 		
 Deployment

 		
 Automatic start

 		
 piw-monitor

 		
 Synopsis

 		
 Description

 		
 Usage

 		
 Pause

 		
 Resume

 		
 Kill Slave

 		
 Terminate Master

 		
 Quit

 		
 piw-sense

 		
 Synopsis

 		
 Description

 		
 Usage

 		
 Layout

 		
 Navigation

 		
 piw-initdb

 		
 Synopsis

 		
 Description

 		
 Usage

 		
 piw-import

 		
 Synopsis

 		
 Description

 		
 Usage

 		
 piw-rebuild

 		
 Synopsis

 		
 Description

 		
 Usage

 		
 piw-remove

 		
 Synopsis

 		
 Description

 		
 Usage

 		
 piw-logger

 		
 Synopsis

 		
 Description

 		
 Usage

 		
 Development

 		
 Testing

 		
 Design

 		
 Tasks

 		
 Cloud Gazer

 		
 The Oracle

 		
 Seraph

 		
 The Architect

 		
 Slave Driver

 		
 Mr. Chase

 		
 File Juggler

 		
 Big Brother

 		
 The Scribe

 		
 The Secretary

 		
 Queues

 		
 Protocols

 		
 Slave Driver

 		
 Mr Chase (importing)

 		
 Mr Chase (removing)

 		
 Mr Chase (rebuilding)

 		
 File Juggler

 		
 Security

 		
 Module Reference

 		
 piwheels.master

 		
 piwheels.master.db

 		
 piwheels.master.cloud_gazer

 		
 piwheels.master.the_oracle

 		
 piwheels.master.seraph

 		
 piwheels.master.the_architect

 		
 piwheels.master.slave_driver

 		
 piwheels.master.mr_chase

 		
 piwheels.master.file_juggler

 		
 piwheels.master.big_brother

 		
 piwheels.master.the_secretary

 		
 piwheels.master.the_scribe

 		
 piwheels.slave

 		
 piwheels.slave.builder

 		
 piwheels.initdb

 		
 piwheels.importer

 		
 piwheels.remove

 		
 piwheels.transport

 		
 piwheels.tasks

 		
 piwheels.states

 		
 piwheels.ranges

 		
 License

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

